DeepCERES: A deep learning method for cerebellar lobule segmentation using ultra-high resolution multimodal MRI

This paper introduces a novel multimodal and high-resolution human brain cerebellum lobule segmentation method. Unlike current tools that operate at standard resolution (1 mm3) or using mono-modal data, the proposed method improves cerebellum lobule segmentation through the use of a multimodal and u...

Full description

Saved in:
Bibliographic Details
Main Authors: Sergio Morell-Ortega, Marina Ruiz-Perez, Marien Gadea, Roberto Vivo-Hernando, Gregorio Rubio, Fernando Aparici, Maria de la Iglesia-Vaya, Gwenaelle Catheline, Boris Mansencal, Pierrick Coupé, José V. Manjón
Format: Article
Language:English
Published: Elsevier 2025-03-01
Series:NeuroImage
Online Access:http://www.sciencedirect.com/science/article/pii/S1053811925000655
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1823861213181771776
author Sergio Morell-Ortega
Marina Ruiz-Perez
Marien Gadea
Roberto Vivo-Hernando
Gregorio Rubio
Fernando Aparici
Maria de la Iglesia-Vaya
Gwenaelle Catheline
Boris Mansencal
Pierrick Coupé
José V. Manjón
author_facet Sergio Morell-Ortega
Marina Ruiz-Perez
Marien Gadea
Roberto Vivo-Hernando
Gregorio Rubio
Fernando Aparici
Maria de la Iglesia-Vaya
Gwenaelle Catheline
Boris Mansencal
Pierrick Coupé
José V. Manjón
author_sort Sergio Morell-Ortega
collection DOAJ
description This paper introduces a novel multimodal and high-resolution human brain cerebellum lobule segmentation method. Unlike current tools that operate at standard resolution (1 mm3) or using mono-modal data, the proposed method improves cerebellum lobule segmentation through the use of a multimodal and ultra-high resolution (0.125 mm3) training dataset. To develop the method, first, a database of semi-automatically labelled cerebellum lobules was created to train the proposed method with ultra-high resolution T1 and T2 MR images. Then, an ensemble of deep networks has been designed and developed, allowing the proposed method to excel in the complex cerebellum lobule segmentation task, improving precision while being memory efficient. Notably, our approach deviates from the traditional U-Net model by exploring alternative architectures. We have also integrated deep learning with classical machine learning methods incorporating a priori knowledge from multi-atlas segmentation which improved precision and robustness. Finally, a new online pipeline, named DeepCERES, has been developed to make available the proposed method to the scientific community requiring as input only a single T1 MR image at standard resolution.
format Article
id doaj-art-cfbb42878a864115b75d6966d560d9a6
institution Kabale University
issn 1095-9572
language English
publishDate 2025-03-01
publisher Elsevier
record_format Article
series NeuroImage
spelling doaj-art-cfbb42878a864115b75d6966d560d9a62025-02-10T04:34:13ZengElsevierNeuroImage1095-95722025-03-01308121063DeepCERES: A deep learning method for cerebellar lobule segmentation using ultra-high resolution multimodal MRISergio Morell-Ortega0Marina Ruiz-Perez1Marien Gadea2Roberto Vivo-Hernando3Gregorio Rubio4Fernando Aparici5Maria de la Iglesia-Vaya6Gwenaelle Catheline7Boris Mansencal8Pierrick Coupé9José V. Manjón10Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain; Corresponding author.Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, SpainDepartment of Psychobiology, Faculty of Psychology, Universitat de Valencia, Valencia, SpainInstituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, SpainDepartamento de matemática aplicada, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, SpainÁrea de Imagen Médica. Hospital Universitario y Politécnico La Fe. Valencia, SpainUnidad Mixta de Imagen Biomédica FISABIO-CIPF. Fundación para el Fomento de la Investigación Sanitario y Biomédica de la Comunidad Valenciana - Valencia, SpainUniv. Bordeaux, CNRS, UMR 5287, Institut de Neurosciences Cognitives et Intégratives d’Aquitaine, Bordeaux, FranceCNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, in2brain, F-33400 Talence, FranceCNRS, Univ. Bordeaux, Bordeaux INP, LABRI, UMR5800, in2brain, F-33400 Talence, FranceInstituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, SpainThis paper introduces a novel multimodal and high-resolution human brain cerebellum lobule segmentation method. Unlike current tools that operate at standard resolution (1 mm3) or using mono-modal data, the proposed method improves cerebellum lobule segmentation through the use of a multimodal and ultra-high resolution (0.125 mm3) training dataset. To develop the method, first, a database of semi-automatically labelled cerebellum lobules was created to train the proposed method with ultra-high resolution T1 and T2 MR images. Then, an ensemble of deep networks has been designed and developed, allowing the proposed method to excel in the complex cerebellum lobule segmentation task, improving precision while being memory efficient. Notably, our approach deviates from the traditional U-Net model by exploring alternative architectures. We have also integrated deep learning with classical machine learning methods incorporating a priori knowledge from multi-atlas segmentation which improved precision and robustness. Finally, a new online pipeline, named DeepCERES, has been developed to make available the proposed method to the scientific community requiring as input only a single T1 MR image at standard resolution.http://www.sciencedirect.com/science/article/pii/S1053811925000655
spellingShingle Sergio Morell-Ortega
Marina Ruiz-Perez
Marien Gadea
Roberto Vivo-Hernando
Gregorio Rubio
Fernando Aparici
Maria de la Iglesia-Vaya
Gwenaelle Catheline
Boris Mansencal
Pierrick Coupé
José V. Manjón
DeepCERES: A deep learning method for cerebellar lobule segmentation using ultra-high resolution multimodal MRI
NeuroImage
title DeepCERES: A deep learning method for cerebellar lobule segmentation using ultra-high resolution multimodal MRI
title_full DeepCERES: A deep learning method for cerebellar lobule segmentation using ultra-high resolution multimodal MRI
title_fullStr DeepCERES: A deep learning method for cerebellar lobule segmentation using ultra-high resolution multimodal MRI
title_full_unstemmed DeepCERES: A deep learning method for cerebellar lobule segmentation using ultra-high resolution multimodal MRI
title_short DeepCERES: A deep learning method for cerebellar lobule segmentation using ultra-high resolution multimodal MRI
title_sort deepceres a deep learning method for cerebellar lobule segmentation using ultra high resolution multimodal mri
url http://www.sciencedirect.com/science/article/pii/S1053811925000655
work_keys_str_mv AT sergiomorellortega deepceresadeeplearningmethodforcerebellarlobulesegmentationusingultrahighresolutionmultimodalmri
AT marinaruizperez deepceresadeeplearningmethodforcerebellarlobulesegmentationusingultrahighresolutionmultimodalmri
AT mariengadea deepceresadeeplearningmethodforcerebellarlobulesegmentationusingultrahighresolutionmultimodalmri
AT robertovivohernando deepceresadeeplearningmethodforcerebellarlobulesegmentationusingultrahighresolutionmultimodalmri
AT gregoriorubio deepceresadeeplearningmethodforcerebellarlobulesegmentationusingultrahighresolutionmultimodalmri
AT fernandoaparici deepceresadeeplearningmethodforcerebellarlobulesegmentationusingultrahighresolutionmultimodalmri
AT mariadelaiglesiavaya deepceresadeeplearningmethodforcerebellarlobulesegmentationusingultrahighresolutionmultimodalmri
AT gwenaellecatheline deepceresadeeplearningmethodforcerebellarlobulesegmentationusingultrahighresolutionmultimodalmri
AT borismansencal deepceresadeeplearningmethodforcerebellarlobulesegmentationusingultrahighresolutionmultimodalmri
AT pierrickcoupe deepceresadeeplearningmethodforcerebellarlobulesegmentationusingultrahighresolutionmultimodalmri
AT josevmanjon deepceresadeeplearningmethodforcerebellarlobulesegmentationusingultrahighresolutionmultimodalmri