A non-genotoxic stem cell therapy boosts lymphopoiesis and averts age-related blood diseases in mice
Abstract Hematopoietic stem cell (HSC) transplantation offers a cure for a variety of blood disorders, predominantly affecting the elderly; however, its application, especially in this demographic, is limited by treatment toxicity. In response, we employ a murine transplantation model based on low-i...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-06-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-60464-3 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Hematopoietic stem cell (HSC) transplantation offers a cure for a variety of blood disorders, predominantly affecting the elderly; however, its application, especially in this demographic, is limited by treatment toxicity. In response, we employ a murine transplantation model based on low-intensity conditioning protocols using antibody-mediated HSC depletion. While aging presents a significant barrier to effective HSC engraftment, optimizing HSC doses and non-genotoxic targeting methods greatly enhance the long-term multilineage activity of the transplanted cells. We demonstrate that young HSCs, once effectively engrafted in aged hosts, improve hematopoietic output and ameliorate age-compromised lymphopoiesis. This culminated in a strategy that robustly mitigates disease progression in a genetic model of myelodysplastic syndrome. These results suggest that non-genotoxic HSC transplantation could fundamentally change the clinical management of age-associated hematological disorders, offering a prophylactic tool to delay or even prevent their onset in elderly patients. |
|---|---|
| ISSN: | 2041-1723 |