Autoencoder Artificial Neural Network Model for Air Pollution Index Prediction

Air pollution, a significant global challenge driven by industrialization, urbanization, and population growth, is caused by the emission of harmful gases, particulates, and biological molecules into the atmosphere, posing serious risks to health and the environment. Key sources include power plant...

Full description

Saved in:
Bibliographic Details
Main Authors: Nor Irwin Basir, Kathlyn Kaiyun Tan, Danny Hartanto Djarum, Zainal Ahmad, Dai-Viet N. Vo, Zhang Jie
Format: Article
Language:English
Published: IIUM Press, International Islamic University Malaysia 2025-01-01
Series:International Islamic University Malaysia Engineering Journal
Subjects:
Online Access:https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/2818
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850113440624934912
author Nor Irwin Basir
Kathlyn Kaiyun Tan
Danny Hartanto Djarum
Zainal Ahmad
Dai-Viet N. Vo
Zhang Jie
author_facet Nor Irwin Basir
Kathlyn Kaiyun Tan
Danny Hartanto Djarum
Zainal Ahmad
Dai-Viet N. Vo
Zhang Jie
author_sort Nor Irwin Basir
collection DOAJ
description Air pollution, a significant global challenge driven by industrialization, urbanization, and population growth, is caused by the emission of harmful gases, particulates, and biological molecules into the atmosphere, posing serious risks to health and the environment. Key sources include power plants, industrial activities, vehicles, and residential heating. Thus, effective air quality monitoring and forecasting are crucial to mitigating the adverse impacts of pollution. This paper presents shallow and deep sparse autoencoder artificial neural network models to improve the prediction of the Air Pollution Index (API) in Perak Darul Ridzuan, Malaysia, as a case study. The results show that the deep sparse autoencoder achieves better prediction accuracy with  and  values of 0.1474 and 0.8331, respectively, compared to 0.1515 and 0.8300 for the shallow sparse autoencoder. The performance of these autoencoder models is also compared with other models, such as feedforward artificial neural networks (FANN) and principal component analysis (PCA). The findings confirm that both autoencoder models enhance API prediction accuracy, with the deep sparse autoencoder emerging as the optimal model, highlighting the potential of deep learning in improving air quality prediction. ABSTRAK: Pencemaran udara, merupakan satu cabaran global yang didorong oleh perindustrian, urbanisasi pesat, dan pertumbuhan populasi, adalah disebabkan oleh pelepasan gas, partikel, dan molekul biologi merbahaya ke atmosfera, menimbulkan risiko serius kepada kesihatan dan alam sekitar. Sumber utama termasuk loji janakuasa, aktiviti industri, kenderaan, dan pemanasan kediaman. Oleh itu pemantauan dan ramalan kualiti udara penting bagi mengurangkan kesan buruk pencemaran. Kajian ini membentangkan model rangkaian neural tiruan pengauto kod jarang ‘cetek’ dan pengauto kod jarang ‘dalam’ memperbaiki ramalan Indeks Pencemaran Udara (API) di negeri Perak Darul Ridzuan, Malaysia sebagai kes kajian. Dapatan kajian menunjukkan bahawa pengautokod jarang ‘dalam’ mencapai ketepatan ramalan lebih baik, dengan nilai MSE dan R2 masing-masing sebanyak 0.1474 dan 0.8331, berbanding 0.1515 dan 0.8300 bagi pengautokod jarang ‘cetek’. Prestasi model pengautokod ini juga dibandingkan dengan model lain, seperti rangkaian neural tiruan suapan hadapan (FANN) dan analisis komponen utama (PCA). Hasil kajian mengesahkan bahawa kedua-dua model pengautokod meningkatkan ketepatan ramalan API, dengan pengautokod jarang ‘dalam’ muncul sebagai model paling optimum, menonjolkan potensi pembelajaran mendalam ‘dalam’ meningkatkan ramalan kualiti udara.
format Article
id doaj-art-cf7a7313166044ac9bfa585353e7e928
institution OA Journals
issn 1511-788X
2289-7860
language English
publishDate 2025-01-01
publisher IIUM Press, International Islamic University Malaysia
record_format Article
series International Islamic University Malaysia Engineering Journal
spelling doaj-art-cf7a7313166044ac9bfa585353e7e9282025-08-20T02:37:09ZengIIUM Press, International Islamic University MalaysiaInternational Islamic University Malaysia Engineering Journal1511-788X2289-78602025-01-0126110.31436/iiumej.v26i1.2818Autoencoder Artificial Neural Network Model for Air Pollution Index PredictionNor Irwin Basir0Kathlyn Kaiyun Tan1Danny Hartanto Djarum2Zainal Ahmad3https://orcid.org/0000-0003-4134-2173Dai-Viet N. Vo4Zhang Jie5https://orcid.org/0000-0002-9745-664XUniversiti Sains Malaysia Universiti Sains Malaysia Universiti Sains Malaysia Universiti Sains MalaysiaUniversiti Sains Malaysia Newcastle University Air pollution, a significant global challenge driven by industrialization, urbanization, and population growth, is caused by the emission of harmful gases, particulates, and biological molecules into the atmosphere, posing serious risks to health and the environment. Key sources include power plants, industrial activities, vehicles, and residential heating. Thus, effective air quality monitoring and forecasting are crucial to mitigating the adverse impacts of pollution. This paper presents shallow and deep sparse autoencoder artificial neural network models to improve the prediction of the Air Pollution Index (API) in Perak Darul Ridzuan, Malaysia, as a case study. The results show that the deep sparse autoencoder achieves better prediction accuracy with  and  values of 0.1474 and 0.8331, respectively, compared to 0.1515 and 0.8300 for the shallow sparse autoencoder. The performance of these autoencoder models is also compared with other models, such as feedforward artificial neural networks (FANN) and principal component analysis (PCA). The findings confirm that both autoencoder models enhance API prediction accuracy, with the deep sparse autoencoder emerging as the optimal model, highlighting the potential of deep learning in improving air quality prediction. ABSTRAK: Pencemaran udara, merupakan satu cabaran global yang didorong oleh perindustrian, urbanisasi pesat, dan pertumbuhan populasi, adalah disebabkan oleh pelepasan gas, partikel, dan molekul biologi merbahaya ke atmosfera, menimbulkan risiko serius kepada kesihatan dan alam sekitar. Sumber utama termasuk loji janakuasa, aktiviti industri, kenderaan, dan pemanasan kediaman. Oleh itu pemantauan dan ramalan kualiti udara penting bagi mengurangkan kesan buruk pencemaran. Kajian ini membentangkan model rangkaian neural tiruan pengauto kod jarang ‘cetek’ dan pengauto kod jarang ‘dalam’ memperbaiki ramalan Indeks Pencemaran Udara (API) di negeri Perak Darul Ridzuan, Malaysia sebagai kes kajian. Dapatan kajian menunjukkan bahawa pengautokod jarang ‘dalam’ mencapai ketepatan ramalan lebih baik, dengan nilai MSE dan R2 masing-masing sebanyak 0.1474 dan 0.8331, berbanding 0.1515 dan 0.8300 bagi pengautokod jarang ‘cetek’. Prestasi model pengautokod ini juga dibandingkan dengan model lain, seperti rangkaian neural tiruan suapan hadapan (FANN) dan analisis komponen utama (PCA). Hasil kajian mengesahkan bahawa kedua-dua model pengautokod meningkatkan ketepatan ramalan API, dengan pengautokod jarang ‘dalam’ muncul sebagai model paling optimum, menonjolkan potensi pembelajaran mendalam ‘dalam’ meningkatkan ramalan kualiti udara. https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/2818Air pollution index, Shallow sparse autoencoder, Deep sparse autoencoder, Prediction
spellingShingle Nor Irwin Basir
Kathlyn Kaiyun Tan
Danny Hartanto Djarum
Zainal Ahmad
Dai-Viet N. Vo
Zhang Jie
Autoencoder Artificial Neural Network Model for Air Pollution Index Prediction
International Islamic University Malaysia Engineering Journal
Air pollution index, Shallow sparse autoencoder, Deep sparse autoencoder, Prediction
title Autoencoder Artificial Neural Network Model for Air Pollution Index Prediction
title_full Autoencoder Artificial Neural Network Model for Air Pollution Index Prediction
title_fullStr Autoencoder Artificial Neural Network Model for Air Pollution Index Prediction
title_full_unstemmed Autoencoder Artificial Neural Network Model for Air Pollution Index Prediction
title_short Autoencoder Artificial Neural Network Model for Air Pollution Index Prediction
title_sort autoencoder artificial neural network model for air pollution index prediction
topic Air pollution index, Shallow sparse autoencoder, Deep sparse autoencoder, Prediction
url https://journals.iium.edu.my/ejournal/index.php/iiumej/article/view/2818
work_keys_str_mv AT norirwinbasir autoencoderartificialneuralnetworkmodelforairpollutionindexprediction
AT kathlynkaiyuntan autoencoderartificialneuralnetworkmodelforairpollutionindexprediction
AT dannyhartantodjarum autoencoderartificialneuralnetworkmodelforairpollutionindexprediction
AT zainalahmad autoencoderartificialneuralnetworkmodelforairpollutionindexprediction
AT daivietnvo autoencoderartificialneuralnetworkmodelforairpollutionindexprediction
AT zhangjie autoencoderartificialneuralnetworkmodelforairpollutionindexprediction