A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties
Let $X$ be a $\mathbb{Q}$-Fano variety admitting a Kähler–Einstein metric. We prove that up to a finite quasi-étale cover, $X$ splits isometrically as a product of Kähler–Einstein $\mathbb{Q}$-Fano varieties whose tangent sheaf is stable with respect to the anticanonical polarization. This relies am...
Saved in:
Main Authors: | Druel, Stéphane, Guenancia, Henri, Păun, Mihai |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2024-06-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.612/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Smooth Stable Foliations of Anosov Diffeomorphisms
by: Gu, Ruihao
Published: (2024-11-01) -
Gluing for the Einstein constraint equations
by: Corvino, Justin
Published: (2025-01-01) -
On the regularity problems of Einstein equations
by: Wang, Qian
Published: (2025-01-01) -
LO QUE EINSTEIN LE HUBIERA DICHO A ARISTÓTELES A PROPÓSITO DE LA DINÁMICA Y LA COSMOLOGÍA
by: Favio Ernesto Cala Vitery
Published: (2010-01-01) -
Weak cosmic censorship, trapped surfaces, and naked singularities for the Einstein vacuum equations
by: Shlapentokh-Rothman, Yakov
Published: (2025-02-01)