A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties

Let $X$ be a $\mathbb{Q}$-Fano variety admitting a Kähler–Einstein metric. We prove that up to a finite quasi-étale cover, $X$ splits isometrically as a product of Kähler–Einstein $\mathbb{Q}$-Fano varieties whose tangent sheaf is stable with respect to the anticanonical polarization. This relies am...

Full description

Saved in:
Bibliographic Details
Main Authors: Druel, Stéphane, Guenancia, Henri, Păun, Mihai
Format: Article
Language:English
Published: Académie des sciences 2024-06-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.612/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1825206266216054784
author Druel, Stéphane
Guenancia, Henri
Păun, Mihai
author_facet Druel, Stéphane
Guenancia, Henri
Păun, Mihai
author_sort Druel, Stéphane
collection DOAJ
description Let $X$ be a $\mathbb{Q}$-Fano variety admitting a Kähler–Einstein metric. We prove that up to a finite quasi-étale cover, $X$ splits isometrically as a product of Kähler–Einstein $\mathbb{Q}$-Fano varieties whose tangent sheaf is stable with respect to the anticanonical polarization. This relies among other things on a very general splitting theorem for algebraically integrable foliations. We also prove that the canonical extension of $T_X$ by $\mathscr{O}_X$ is polystable with respect to the anticanonical polarization.
format Article
id doaj-art-cf67fa6fa64e4c06b85ca5cdfc9041eb
institution Kabale University
issn 1778-3569
language English
publishDate 2024-06-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-cf67fa6fa64e4c06b85ca5cdfc9041eb2025-02-07T11:13:30ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692024-06-01362S19311810.5802/crmath.61210.5802/crmath.612A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varietiesDruel, Stéphane0Guenancia, Henri1Păun, Mihai2Univ Lyon, CNRS, Université Claude Bernard Lyon 1, UMR 5208, Institut Camille Jordan, F-69622 Villeurbanne, FranceInstitut de Mathématiques de Toulouse, Université Paul Sabatier, 31062 Toulouse Cedex 9, FranceLehrstuhl für Mathematik VIII, Universität Bayreuth, 95440 Bayreuth, GermanyLet $X$ be a $\mathbb{Q}$-Fano variety admitting a Kähler–Einstein metric. We prove that up to a finite quasi-étale cover, $X$ splits isometrically as a product of Kähler–Einstein $\mathbb{Q}$-Fano varieties whose tangent sheaf is stable with respect to the anticanonical polarization. This relies among other things on a very general splitting theorem for algebraically integrable foliations. We also prove that the canonical extension of $T_X$ by $\mathscr{O}_X$ is polystable with respect to the anticanonical polarization.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.612/$\mathbb{Q}$-Fano varietiessingular Kähler–Einstein metricsstable reflexive sheavesalgebraically integrable foliations
spellingShingle Druel, Stéphane
Guenancia, Henri
Păun, Mihai
A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties
Comptes Rendus. Mathématique
$\mathbb{Q}$-Fano varieties
singular Kähler–Einstein metrics
stable reflexive sheaves
algebraically integrable foliations
title A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties
title_full A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties
title_fullStr A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties
title_full_unstemmed A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties
title_short A decomposition theorem for $\mathbb{Q}$-Fano Kähler–Einstein varieties
title_sort decomposition theorem for mathbb q fano kahler einstein varieties
topic $\mathbb{Q}$-Fano varieties
singular Kähler–Einstein metrics
stable reflexive sheaves
algebraically integrable foliations
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.612/
work_keys_str_mv AT druelstephane adecompositiontheoremformathbbqfanokahlereinsteinvarieties
AT guenanciahenri adecompositiontheoremformathbbqfanokahlereinsteinvarieties
AT paunmihai adecompositiontheoremformathbbqfanokahlereinsteinvarieties
AT druelstephane decompositiontheoremformathbbqfanokahlereinsteinvarieties
AT guenanciahenri decompositiontheoremformathbbqfanokahlereinsteinvarieties
AT paunmihai decompositiontheoremformathbbqfanokahlereinsteinvarieties