The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction

Abstract Bioinformatics models illustrate interactions among aromatic rings. Aromatic molecules and groups exist in multiple systems, ranging from biological substances to materials. However, the nature of these non-covalent interactions remains a matter of controversy and uncertainty. This study pr...

Full description

Saved in:
Bibliographic Details
Main Authors: Raúl Riera Aroche, Yveth M. Ortiz García, Esli C. Sánchez Moreno, Lizbeth Riera Leal, Andrea C. Machado Sulbarán, Annie Riera Leal
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-10722-7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849344760814239744
author Raúl Riera Aroche
Yveth M. Ortiz García
Esli C. Sánchez Moreno
Lizbeth Riera Leal
Andrea C. Machado Sulbarán
Annie Riera Leal
author_facet Raúl Riera Aroche
Yveth M. Ortiz García
Esli C. Sánchez Moreno
Lizbeth Riera Leal
Andrea C. Machado Sulbarán
Annie Riera Leal
author_sort Raúl Riera Aroche
collection DOAJ
description Abstract Bioinformatics models illustrate interactions among aromatic rings. Aromatic molecules and groups exist in multiple systems, ranging from biological substances to materials. However, the nature of these non-covalent interactions remains a matter of controversy and uncertainty. This study presents a theoretical approach to uncover the code behind π–π non-covalent interactions using benzene dimers as a prototype. Orbital and electrostatic interactions influence the solid-state conformation of these complexes. Electron delocalization occurs from the donor benzene into the empty lobe of the pz orbital of one carbon atom in the acceptor benzene. The associated charge transfer accounts for the interaction energy between the dimers, functioning like a highly entangled qubit. Additionally, from a quantum–mechanical perspective, the response to an optical radiation field is regarded as an interaction that causes the field to mix the energy levels of the electronic system. Here, we present our analysis of the parallel alignment of aromatic coupling and light–π interactions based on our model of electron pairs in oscillatory resonant quantum states.
format Article
id doaj-art-cf65e81aa19b4dfd84a39211c4b2f4aa
institution Kabale University
issn 2045-2322
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj-art-cf65e81aa19b4dfd84a39211c4b2f4aa2025-08-20T03:42:35ZengNature PortfolioScientific Reports2045-23222025-07-0115111410.1038/s41598-025-10722-7The π–π architectures reveal a hidden quantum code linking aromaticity to light interactionRaúl Riera Aroche0Yveth M. Ortiz García1Esli C. Sánchez Moreno2Lizbeth Riera Leal3Andrea C. Machado Sulbarán4Annie Riera Leal5Department of Research in Physics, University of SonoraResearch and Higher Education Center of UNEPROPResearch and Higher Education Center of UNEPROPResearch and Higher Education Center of UNEPROPChildhood and Adolescence Cancer Research Institute, University Center of Health Sciences, University of GuadalajaraResearch and Higher Education Center of UNEPROPAbstract Bioinformatics models illustrate interactions among aromatic rings. Aromatic molecules and groups exist in multiple systems, ranging from biological substances to materials. However, the nature of these non-covalent interactions remains a matter of controversy and uncertainty. This study presents a theoretical approach to uncover the code behind π–π non-covalent interactions using benzene dimers as a prototype. Orbital and electrostatic interactions influence the solid-state conformation of these complexes. Electron delocalization occurs from the donor benzene into the empty lobe of the pz orbital of one carbon atom in the acceptor benzene. The associated charge transfer accounts for the interaction energy between the dimers, functioning like a highly entangled qubit. Additionally, from a quantum–mechanical perspective, the response to an optical radiation field is regarded as an interaction that causes the field to mix the energy levels of the electronic system. Here, we present our analysis of the parallel alignment of aromatic coupling and light–π interactions based on our model of electron pairs in oscillatory resonant quantum states.https://doi.org/10.1038/s41598-025-10722-7AromaticityElectron pairsORQSBenzene dimersTwo photonsPhotochemistry of benzene
spellingShingle Raúl Riera Aroche
Yveth M. Ortiz García
Esli C. Sánchez Moreno
Lizbeth Riera Leal
Andrea C. Machado Sulbarán
Annie Riera Leal
The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction
Scientific Reports
Aromaticity
Electron pairs
ORQS
Benzene dimers
Two photons
Photochemistry of benzene
title The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction
title_full The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction
title_fullStr The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction
title_full_unstemmed The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction
title_short The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction
title_sort π π architectures reveal a hidden quantum code linking aromaticity to light interaction
topic Aromaticity
Electron pairs
ORQS
Benzene dimers
Two photons
Photochemistry of benzene
url https://doi.org/10.1038/s41598-025-10722-7
work_keys_str_mv AT raulrieraaroche thepparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction
AT yvethmortizgarcia thepparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction
AT eslicsanchezmoreno thepparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction
AT lizbethrieraleal thepparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction
AT andreacmachadosulbaran thepparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction
AT annierieraleal thepparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction
AT raulrieraaroche pparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction
AT yvethmortizgarcia pparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction
AT eslicsanchezmoreno pparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction
AT lizbethrieraleal pparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction
AT andreacmachadosulbaran pparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction
AT annierieraleal pparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction