The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction
Abstract Bioinformatics models illustrate interactions among aromatic rings. Aromatic molecules and groups exist in multiple systems, ranging from biological substances to materials. However, the nature of these non-covalent interactions remains a matter of controversy and uncertainty. This study pr...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Scientific Reports |
| Subjects: | |
| Online Access: | https://doi.org/10.1038/s41598-025-10722-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849344760814239744 |
|---|---|
| author | Raúl Riera Aroche Yveth M. Ortiz García Esli C. Sánchez Moreno Lizbeth Riera Leal Andrea C. Machado Sulbarán Annie Riera Leal |
| author_facet | Raúl Riera Aroche Yveth M. Ortiz García Esli C. Sánchez Moreno Lizbeth Riera Leal Andrea C. Machado Sulbarán Annie Riera Leal |
| author_sort | Raúl Riera Aroche |
| collection | DOAJ |
| description | Abstract Bioinformatics models illustrate interactions among aromatic rings. Aromatic molecules and groups exist in multiple systems, ranging from biological substances to materials. However, the nature of these non-covalent interactions remains a matter of controversy and uncertainty. This study presents a theoretical approach to uncover the code behind π–π non-covalent interactions using benzene dimers as a prototype. Orbital and electrostatic interactions influence the solid-state conformation of these complexes. Electron delocalization occurs from the donor benzene into the empty lobe of the pz orbital of one carbon atom in the acceptor benzene. The associated charge transfer accounts for the interaction energy between the dimers, functioning like a highly entangled qubit. Additionally, from a quantum–mechanical perspective, the response to an optical radiation field is regarded as an interaction that causes the field to mix the energy levels of the electronic system. Here, we present our analysis of the parallel alignment of aromatic coupling and light–π interactions based on our model of electron pairs in oscillatory resonant quantum states. |
| format | Article |
| id | doaj-art-cf65e81aa19b4dfd84a39211c4b2f4aa |
| institution | Kabale University |
| issn | 2045-2322 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Scientific Reports |
| spelling | doaj-art-cf65e81aa19b4dfd84a39211c4b2f4aa2025-08-20T03:42:35ZengNature PortfolioScientific Reports2045-23222025-07-0115111410.1038/s41598-025-10722-7The π–π architectures reveal a hidden quantum code linking aromaticity to light interactionRaúl Riera Aroche0Yveth M. Ortiz García1Esli C. Sánchez Moreno2Lizbeth Riera Leal3Andrea C. Machado Sulbarán4Annie Riera Leal5Department of Research in Physics, University of SonoraResearch and Higher Education Center of UNEPROPResearch and Higher Education Center of UNEPROPResearch and Higher Education Center of UNEPROPChildhood and Adolescence Cancer Research Institute, University Center of Health Sciences, University of GuadalajaraResearch and Higher Education Center of UNEPROPAbstract Bioinformatics models illustrate interactions among aromatic rings. Aromatic molecules and groups exist in multiple systems, ranging from biological substances to materials. However, the nature of these non-covalent interactions remains a matter of controversy and uncertainty. This study presents a theoretical approach to uncover the code behind π–π non-covalent interactions using benzene dimers as a prototype. Orbital and electrostatic interactions influence the solid-state conformation of these complexes. Electron delocalization occurs from the donor benzene into the empty lobe of the pz orbital of one carbon atom in the acceptor benzene. The associated charge transfer accounts for the interaction energy between the dimers, functioning like a highly entangled qubit. Additionally, from a quantum–mechanical perspective, the response to an optical radiation field is regarded as an interaction that causes the field to mix the energy levels of the electronic system. Here, we present our analysis of the parallel alignment of aromatic coupling and light–π interactions based on our model of electron pairs in oscillatory resonant quantum states.https://doi.org/10.1038/s41598-025-10722-7AromaticityElectron pairsORQSBenzene dimersTwo photonsPhotochemistry of benzene |
| spellingShingle | Raúl Riera Aroche Yveth M. Ortiz García Esli C. Sánchez Moreno Lizbeth Riera Leal Andrea C. Machado Sulbarán Annie Riera Leal The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction Scientific Reports Aromaticity Electron pairs ORQS Benzene dimers Two photons Photochemistry of benzene |
| title | The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction |
| title_full | The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction |
| title_fullStr | The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction |
| title_full_unstemmed | The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction |
| title_short | The π–π architectures reveal a hidden quantum code linking aromaticity to light interaction |
| title_sort | π π architectures reveal a hidden quantum code linking aromaticity to light interaction |
| topic | Aromaticity Electron pairs ORQS Benzene dimers Two photons Photochemistry of benzene |
| url | https://doi.org/10.1038/s41598-025-10722-7 |
| work_keys_str_mv | AT raulrieraaroche thepparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction AT yvethmortizgarcia thepparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction AT eslicsanchezmoreno thepparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction AT lizbethrieraleal thepparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction AT andreacmachadosulbaran thepparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction AT annierieraleal thepparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction AT raulrieraaroche pparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction AT yvethmortizgarcia pparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction AT eslicsanchezmoreno pparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction AT lizbethrieraleal pparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction AT andreacmachadosulbaran pparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction AT annierieraleal pparchitecturesrevealahiddenquantumcodelinkingaromaticitytolightinteraction |