P336: Testing concordance of pathogenicity predictions from orthogonal machine learning algorithms and signal to noise analysis

Saved in:
Bibliographic Details
Main Authors: Trevor Williams, Leonie Kurzlechner, Yuya Kobayashi, Keith Nykamp, Andrew Landstrom, Flavia M. Facio
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:Genetics in Medicine Open
Online Access:http://www.sciencedirect.com/science/article/pii/S2949774425003401
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850178208512606208
author Trevor Williams
Leonie Kurzlechner
Yuya Kobayashi
Keith Nykamp
Andrew Landstrom
Flavia M. Facio
author_facet Trevor Williams
Leonie Kurzlechner
Yuya Kobayashi
Keith Nykamp
Andrew Landstrom
Flavia M. Facio
author_sort Trevor Williams
collection DOAJ
format Article
id doaj-art-cf4d164e710c4b6badf52595f99430f4
institution OA Journals
issn 2949-7744
language English
publishDate 2025-01-01
publisher Elsevier
record_format Article
series Genetics in Medicine Open
spelling doaj-art-cf4d164e710c4b6badf52595f99430f42025-08-20T02:18:47ZengElsevierGenetics in Medicine Open2949-77442025-01-01310230110.1016/j.gimo.2025.102301P336: Testing concordance of pathogenicity predictions from orthogonal machine learning algorithms and signal to noise analysisTrevor Williams0Leonie Kurzlechner1Yuya Kobayashi2Keith Nykamp3Andrew Landstrom4Flavia M. Facio5Labcorp Genetics IncUniversity of Pennsylvania School of MedicineLabcorp Genetics IncLabcorp Genetics IncDepartments of Pediatrics and Cell Biology, Duke University School of MedicineLabcorp Genetics Inchttp://www.sciencedirect.com/science/article/pii/S2949774425003401
spellingShingle Trevor Williams
Leonie Kurzlechner
Yuya Kobayashi
Keith Nykamp
Andrew Landstrom
Flavia M. Facio
P336: Testing concordance of pathogenicity predictions from orthogonal machine learning algorithms and signal to noise analysis
Genetics in Medicine Open
title P336: Testing concordance of pathogenicity predictions from orthogonal machine learning algorithms and signal to noise analysis
title_full P336: Testing concordance of pathogenicity predictions from orthogonal machine learning algorithms and signal to noise analysis
title_fullStr P336: Testing concordance of pathogenicity predictions from orthogonal machine learning algorithms and signal to noise analysis
title_full_unstemmed P336: Testing concordance of pathogenicity predictions from orthogonal machine learning algorithms and signal to noise analysis
title_short P336: Testing concordance of pathogenicity predictions from orthogonal machine learning algorithms and signal to noise analysis
title_sort p336 testing concordance of pathogenicity predictions from orthogonal machine learning algorithms and signal to noise analysis
url http://www.sciencedirect.com/science/article/pii/S2949774425003401
work_keys_str_mv AT trevorwilliams p336testingconcordanceofpathogenicitypredictionsfromorthogonalmachinelearningalgorithmsandsignaltonoiseanalysis
AT leoniekurzlechner p336testingconcordanceofpathogenicitypredictionsfromorthogonalmachinelearningalgorithmsandsignaltonoiseanalysis
AT yuyakobayashi p336testingconcordanceofpathogenicitypredictionsfromorthogonalmachinelearningalgorithmsandsignaltonoiseanalysis
AT keithnykamp p336testingconcordanceofpathogenicitypredictionsfromorthogonalmachinelearningalgorithmsandsignaltonoiseanalysis
AT andrewlandstrom p336testingconcordanceofpathogenicitypredictionsfromorthogonalmachinelearningalgorithmsandsignaltonoiseanalysis
AT flaviamfacio p336testingconcordanceofpathogenicitypredictionsfromorthogonalmachinelearningalgorithmsandsignaltonoiseanalysis