Coefficient bounds for q-convex functions related to q-Bernoulli numbers

The main objective of this paper is to present and investigate a subclass 𝒞(b, q) of q-convex functions in the unit disk that is defined by the q-Bernoulli numbers. For this subclass, we find the upper bounds on the Fekete-Szeg functional, the coefficient bounds, and the second Hankel determinant....

Full description

Saved in:
Bibliographic Details
Main Authors: Breaz Daniel, Orhan Halit, Arıkan Hava, Cotˆırlă Luminiţa-Ioana
Format: Article
Language:English
Published: Sciendo 2025-03-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.2478/auom-2025-0005
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849702606562131968
author Breaz Daniel
Orhan Halit
Arıkan Hava
Cotˆırlă Luminiţa-Ioana
author_facet Breaz Daniel
Orhan Halit
Arıkan Hava
Cotˆırlă Luminiţa-Ioana
author_sort Breaz Daniel
collection DOAJ
description The main objective of this paper is to present and investigate a subclass 𝒞(b, q) of q-convex functions in the unit disk that is defined by the q-Bernoulli numbers. For this subclass, we find the upper bounds on the Fekete-Szeg functional, the coefficient bounds, and the second Hankel determinant.
format Article
id doaj-art-cf49c097b9b343bf9dbc45da070660db
institution DOAJ
issn 1844-0835
language English
publishDate 2025-03-01
publisher Sciendo
record_format Article
series Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
spelling doaj-art-cf49c097b9b343bf9dbc45da070660db2025-08-20T03:17:35ZengSciendoAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica1844-08352025-03-01331779210.2478/auom-2025-0005Coefficient bounds for q-convex functions related to q-Bernoulli numbersBreaz Daniel0Orhan Halit1Arıkan Hava2Cotˆırlă Luminiţa-Ioana31Department of Mathematics, 1 Decembrie 1918 University of Alba-Iulia, Alba-Iulia, Romania.2Department of Mathematics, Faculty of Science Atatrk University, 25240, Erzurum, Turkiye.3Department of Mathematics, Faculty of Science Atatrk University, 25240, Erzurum, Turkiye.4Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Romania.The main objective of this paper is to present and investigate a subclass 𝒞(b, q) of q-convex functions in the unit disk that is defined by the q-Bernoulli numbers. For this subclass, we find the upper bounds on the Fekete-Szeg functional, the coefficient bounds, and the second Hankel determinant.https://doi.org/10.2478/auom-2025-0005analytic and univalent functionsq-derivativeq-convex functionsq-bernoulli numbersfekete-szeg inequalityhankel determinantprimary 30c45, 30c50secondary 30c80
spellingShingle Breaz Daniel
Orhan Halit
Arıkan Hava
Cotˆırlă Luminiţa-Ioana
Coefficient bounds for q-convex functions related to q-Bernoulli numbers
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
analytic and univalent functions
q-derivative
q-convex functions
q-bernoulli numbers
fekete-szeg inequality
hankel determinant
primary 30c45, 30c50
secondary 30c80
title Coefficient bounds for q-convex functions related to q-Bernoulli numbers
title_full Coefficient bounds for q-convex functions related to q-Bernoulli numbers
title_fullStr Coefficient bounds for q-convex functions related to q-Bernoulli numbers
title_full_unstemmed Coefficient bounds for q-convex functions related to q-Bernoulli numbers
title_short Coefficient bounds for q-convex functions related to q-Bernoulli numbers
title_sort coefficient bounds for q convex functions related to q bernoulli numbers
topic analytic and univalent functions
q-derivative
q-convex functions
q-bernoulli numbers
fekete-szeg inequality
hankel determinant
primary 30c45, 30c50
secondary 30c80
url https://doi.org/10.2478/auom-2025-0005
work_keys_str_mv AT breazdaniel coefficientboundsforqconvexfunctionsrelatedtoqbernoullinumbers
AT orhanhalit coefficientboundsforqconvexfunctionsrelatedtoqbernoullinumbers
AT arıkanhava coefficientboundsforqconvexfunctionsrelatedtoqbernoullinumbers
AT cotˆırlaluminitaioana coefficientboundsforqconvexfunctionsrelatedtoqbernoullinumbers