Coefficient bounds for q-convex functions related to q-Bernoulli numbers
The main objective of this paper is to present and investigate a subclass 𝒞(b, q) of q-convex functions in the unit disk that is defined by the q-Bernoulli numbers. For this subclass, we find the upper bounds on the Fekete-Szeg functional, the coefficient bounds, and the second Hankel determinant....
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Sciendo
2025-03-01
|
| Series: | Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
| Subjects: | |
| Online Access: | https://doi.org/10.2478/auom-2025-0005 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849702606562131968 |
|---|---|
| author | Breaz Daniel Orhan Halit Arıkan Hava Cotˆırlă Luminiţa-Ioana |
| author_facet | Breaz Daniel Orhan Halit Arıkan Hava Cotˆırlă Luminiţa-Ioana |
| author_sort | Breaz Daniel |
| collection | DOAJ |
| description | The main objective of this paper is to present and investigate a subclass 𝒞(b, q) of q-convex functions in the unit disk that is defined by the q-Bernoulli numbers. For this subclass, we find the upper bounds on the Fekete-Szeg functional, the coefficient bounds, and the second Hankel determinant. |
| format | Article |
| id | doaj-art-cf49c097b9b343bf9dbc45da070660db |
| institution | DOAJ |
| issn | 1844-0835 |
| language | English |
| publishDate | 2025-03-01 |
| publisher | Sciendo |
| record_format | Article |
| series | Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica |
| spelling | doaj-art-cf49c097b9b343bf9dbc45da070660db2025-08-20T03:17:35ZengSciendoAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica1844-08352025-03-01331779210.2478/auom-2025-0005Coefficient bounds for q-convex functions related to q-Bernoulli numbersBreaz Daniel0Orhan Halit1Arıkan Hava2Cotˆırlă Luminiţa-Ioana31Department of Mathematics, 1 Decembrie 1918 University of Alba-Iulia, Alba-Iulia, Romania.2Department of Mathematics, Faculty of Science Atatrk University, 25240, Erzurum, Turkiye.3Department of Mathematics, Faculty of Science Atatrk University, 25240, Erzurum, Turkiye.4Department of Mathematics, Technical University of Cluj-Napoca, Cluj-Napoca, Romania.The main objective of this paper is to present and investigate a subclass 𝒞(b, q) of q-convex functions in the unit disk that is defined by the q-Bernoulli numbers. For this subclass, we find the upper bounds on the Fekete-Szeg functional, the coefficient bounds, and the second Hankel determinant.https://doi.org/10.2478/auom-2025-0005analytic and univalent functionsq-derivativeq-convex functionsq-bernoulli numbersfekete-szeg inequalityhankel determinantprimary 30c45, 30c50secondary 30c80 |
| spellingShingle | Breaz Daniel Orhan Halit Arıkan Hava Cotˆırlă Luminiţa-Ioana Coefficient bounds for q-convex functions related to q-Bernoulli numbers Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica analytic and univalent functions q-derivative q-convex functions q-bernoulli numbers fekete-szeg inequality hankel determinant primary 30c45, 30c50 secondary 30c80 |
| title | Coefficient bounds for q-convex functions related to q-Bernoulli numbers |
| title_full | Coefficient bounds for q-convex functions related to q-Bernoulli numbers |
| title_fullStr | Coefficient bounds for q-convex functions related to q-Bernoulli numbers |
| title_full_unstemmed | Coefficient bounds for q-convex functions related to q-Bernoulli numbers |
| title_short | Coefficient bounds for q-convex functions related to q-Bernoulli numbers |
| title_sort | coefficient bounds for q convex functions related to q bernoulli numbers |
| topic | analytic and univalent functions q-derivative q-convex functions q-bernoulli numbers fekete-szeg inequality hankel determinant primary 30c45, 30c50 secondary 30c80 |
| url | https://doi.org/10.2478/auom-2025-0005 |
| work_keys_str_mv | AT breazdaniel coefficientboundsforqconvexfunctionsrelatedtoqbernoullinumbers AT orhanhalit coefficientboundsforqconvexfunctionsrelatedtoqbernoullinumbers AT arıkanhava coefficientboundsforqconvexfunctionsrelatedtoqbernoullinumbers AT cotˆırlaluminitaioana coefficientboundsforqconvexfunctionsrelatedtoqbernoullinumbers |