A Zinc Oxide Interconnected Hydroxypropyl-Beta-Cyclodextrin/rGO Nanocomposite as an Electrocatalyst for Melatonin Detection: An Ultra-Sensitive Electrochemical Sensor
Nanocomposite hydroxypropyl-beta-cyclodextrin functionalized reduced graphene oxide sheets (HpβCD@rGOs) with zinc oxide flaky structures (ZnOFs) were synthesized. The ZnOFs/HpβCD@rGOs were first characterized to examine their physicochemical characteristics. The ZnOFs exhibited a highly crystalline...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/11/3266 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Nanocomposite hydroxypropyl-beta-cyclodextrin functionalized reduced graphene oxide sheets (HpβCD@rGOs) with zinc oxide flaky structures (ZnOFs) were synthesized. The ZnOFs/HpβCD@rGOs were first characterized to examine their physicochemical characteristics. The ZnOFs exhibited a highly crystalline structure intertwined with HpβCD@rGO sheets. The electrocatalyst experienced excellent electrochemical oxidation current responses toward melatonin (MTN). The interaction between the catalyst and MTN improves electrochemical activity through a synergistic action, which can be measured by a glassy carbon electrode (GCE) modified with ZnOFs/HpβCD@rGOs. This modified electrode with the increased reactive sites and a large electrochemically active surface area allows the rapid oxidation reaction of MTN. The oxidation of MTN was detected and measured with a linearity range around 0.014–0.149 and 1.149–643.341 (µM), with a low detection limit (LOD) of around 0.0105 µM or 10.5 nM. The sensitivity was around 6.19 μA μM<sup>−1</sup> cm<sup>−2</sup>. The constructed electrode demonstrated a notable level of selectivity to MTN when the interfering (biological) chemicals with a similar structure to MTN were introduced. The real samples were tested in order to examine whether the ZnOFs/HpβCD@rGOs/GCE can be developed for the biomedical monitoring of compounds. The results suggest that ZnOFs/HpβCD@rGOs/GCE can detect MTN in in vitro human samples. Furthermore, the cost-effectiveness, enhanced electrochemical capabilities, and easy fabrication of the electrode make the ZnOFs/HpβCD@rGOs composite a feasible solution for the future industrial development of monitoring tools as sensors. |
|---|---|
| ISSN: | 1424-8220 |