The nuclear charge radius of 13C
Abstract The size is a key property of a nucleus. Accurate nuclear radii are extracted from elastic electron scattering, laser spectroscopy, and muonic atom spectroscopy. The results are not always compatible, as the proton-radius puzzle has shown most dramatically. Beyond helium, precision data fro...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-60280-9 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849764233730850816 |
|---|---|
| author | Patrick Müller Matthias Heinz Phillip Imgram Kristian König Bernhard Maass Takayuki Miyagi Wilfried Nörtershäuser Robert Roth Achim Schwenk |
| author_facet | Patrick Müller Matthias Heinz Phillip Imgram Kristian König Bernhard Maass Takayuki Miyagi Wilfried Nörtershäuser Robert Roth Achim Schwenk |
| author_sort | Patrick Müller |
| collection | DOAJ |
| description | Abstract The size is a key property of a nucleus. Accurate nuclear radii are extracted from elastic electron scattering, laser spectroscopy, and muonic atom spectroscopy. The results are not always compatible, as the proton-radius puzzle has shown most dramatically. Beyond helium, precision data from muonic and electronic sources are scarce in the light-mass region. The stable isotopes of carbon are an exception. We present a laser spectroscopic measurement of the root-mean-square (rms) charge radius of 13C and compare this with ab initio nuclear structure calculations. Measuring all hyperfine components of the 2 3S $${\to}$$ → 2 3P fine-structure triplet in 13C4+ ions referenced to a frequency comb allows us to determine its center-of-gravity with accuracy better than 2 MHz although second-order hyperfine-structure effects shift individual lines by several GHz. We improved the uncertainty of R c(13C) determined with electrons by a factor of 6 and found a 3σ discrepancy with the muonic atom result of similar accuracy. |
| format | Article |
| id | doaj-art-cf165121e87f4e838fe9c5edd1899897 |
| institution | DOAJ |
| issn | 2041-1723 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Nature Communications |
| spelling | doaj-art-cf165121e87f4e838fe9c5edd18998972025-08-20T03:05:10ZengNature PortfolioNature Communications2041-17232025-07-0116111010.1038/s41467-025-60280-9The nuclear charge radius of 13CPatrick Müller0Matthias Heinz1Phillip Imgram2Kristian König3Bernhard Maass4Takayuki Miyagi5Wilfried Nörtershäuser6Robert Roth7Achim Schwenk8Institut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtAbstract The size is a key property of a nucleus. Accurate nuclear radii are extracted from elastic electron scattering, laser spectroscopy, and muonic atom spectroscopy. The results are not always compatible, as the proton-radius puzzle has shown most dramatically. Beyond helium, precision data from muonic and electronic sources are scarce in the light-mass region. The stable isotopes of carbon are an exception. We present a laser spectroscopic measurement of the root-mean-square (rms) charge radius of 13C and compare this with ab initio nuclear structure calculations. Measuring all hyperfine components of the 2 3S $${\to}$$ → 2 3P fine-structure triplet in 13C4+ ions referenced to a frequency comb allows us to determine its center-of-gravity with accuracy better than 2 MHz although second-order hyperfine-structure effects shift individual lines by several GHz. We improved the uncertainty of R c(13C) determined with electrons by a factor of 6 and found a 3σ discrepancy with the muonic atom result of similar accuracy.https://doi.org/10.1038/s41467-025-60280-9 |
| spellingShingle | Patrick Müller Matthias Heinz Phillip Imgram Kristian König Bernhard Maass Takayuki Miyagi Wilfried Nörtershäuser Robert Roth Achim Schwenk The nuclear charge radius of 13C Nature Communications |
| title | The nuclear charge radius of 13C |
| title_full | The nuclear charge radius of 13C |
| title_fullStr | The nuclear charge radius of 13C |
| title_full_unstemmed | The nuclear charge radius of 13C |
| title_short | The nuclear charge radius of 13C |
| title_sort | nuclear charge radius of 13c |
| url | https://doi.org/10.1038/s41467-025-60280-9 |
| work_keys_str_mv | AT patrickmuller thenuclearchargeradiusof13c AT matthiasheinz thenuclearchargeradiusof13c AT phillipimgram thenuclearchargeradiusof13c AT kristiankonig thenuclearchargeradiusof13c AT bernhardmaass thenuclearchargeradiusof13c AT takayukimiyagi thenuclearchargeradiusof13c AT wilfriednortershauser thenuclearchargeradiusof13c AT robertroth thenuclearchargeradiusof13c AT achimschwenk thenuclearchargeradiusof13c AT patrickmuller nuclearchargeradiusof13c AT matthiasheinz nuclearchargeradiusof13c AT phillipimgram nuclearchargeradiusof13c AT kristiankonig nuclearchargeradiusof13c AT bernhardmaass nuclearchargeradiusof13c AT takayukimiyagi nuclearchargeradiusof13c AT wilfriednortershauser nuclearchargeradiusof13c AT robertroth nuclearchargeradiusof13c AT achimschwenk nuclearchargeradiusof13c |