The nuclear charge radius of 13C

Abstract The size is a key property of a nucleus. Accurate nuclear radii are extracted from elastic electron scattering, laser spectroscopy, and muonic atom spectroscopy. The results are not always compatible, as the proton-radius puzzle has shown most dramatically. Beyond helium, precision data fro...

Full description

Saved in:
Bibliographic Details
Main Authors: Patrick Müller, Matthias Heinz, Phillip Imgram, Kristian König, Bernhard Maass, Takayuki Miyagi, Wilfried Nörtershäuser, Robert Roth, Achim Schwenk
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-60280-9
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849764233730850816
author Patrick Müller
Matthias Heinz
Phillip Imgram
Kristian König
Bernhard Maass
Takayuki Miyagi
Wilfried Nörtershäuser
Robert Roth
Achim Schwenk
author_facet Patrick Müller
Matthias Heinz
Phillip Imgram
Kristian König
Bernhard Maass
Takayuki Miyagi
Wilfried Nörtershäuser
Robert Roth
Achim Schwenk
author_sort Patrick Müller
collection DOAJ
description Abstract The size is a key property of a nucleus. Accurate nuclear radii are extracted from elastic electron scattering, laser spectroscopy, and muonic atom spectroscopy. The results are not always compatible, as the proton-radius puzzle has shown most dramatically. Beyond helium, precision data from muonic and electronic sources are scarce in the light-mass region. The stable isotopes of carbon are an exception. We present a laser spectroscopic measurement of the root-mean-square (rms) charge radius of 13C and compare this with ab initio nuclear structure calculations. Measuring all hyperfine components of the 2 3S  $${\to}$$ → 2 3P fine-structure triplet in 13C4+ ions referenced to a frequency comb allows us to determine its center-of-gravity with accuracy better than 2 MHz although second-order hyperfine-structure effects shift individual lines by several GHz. We improved the uncertainty of R c(13C) determined with electrons by a factor of 6 and found a 3σ discrepancy with the muonic atom result of similar accuracy.
format Article
id doaj-art-cf165121e87f4e838fe9c5edd1899897
institution DOAJ
issn 2041-1723
language English
publishDate 2025-07-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-cf165121e87f4e838fe9c5edd18998972025-08-20T03:05:10ZengNature PortfolioNature Communications2041-17232025-07-0116111010.1038/s41467-025-60280-9The nuclear charge radius of 13CPatrick Müller0Matthias Heinz1Phillip Imgram2Kristian König3Bernhard Maass4Takayuki Miyagi5Wilfried Nörtershäuser6Robert Roth7Achim Schwenk8Institut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtInstitut für Kernphysik, Technische Universität DarmstadtAbstract The size is a key property of a nucleus. Accurate nuclear radii are extracted from elastic electron scattering, laser spectroscopy, and muonic atom spectroscopy. The results are not always compatible, as the proton-radius puzzle has shown most dramatically. Beyond helium, precision data from muonic and electronic sources are scarce in the light-mass region. The stable isotopes of carbon are an exception. We present a laser spectroscopic measurement of the root-mean-square (rms) charge radius of 13C and compare this with ab initio nuclear structure calculations. Measuring all hyperfine components of the 2 3S  $${\to}$$ → 2 3P fine-structure triplet in 13C4+ ions referenced to a frequency comb allows us to determine its center-of-gravity with accuracy better than 2 MHz although second-order hyperfine-structure effects shift individual lines by several GHz. We improved the uncertainty of R c(13C) determined with electrons by a factor of 6 and found a 3σ discrepancy with the muonic atom result of similar accuracy.https://doi.org/10.1038/s41467-025-60280-9
spellingShingle Patrick Müller
Matthias Heinz
Phillip Imgram
Kristian König
Bernhard Maass
Takayuki Miyagi
Wilfried Nörtershäuser
Robert Roth
Achim Schwenk
The nuclear charge radius of 13C
Nature Communications
title The nuclear charge radius of 13C
title_full The nuclear charge radius of 13C
title_fullStr The nuclear charge radius of 13C
title_full_unstemmed The nuclear charge radius of 13C
title_short The nuclear charge radius of 13C
title_sort nuclear charge radius of 13c
url https://doi.org/10.1038/s41467-025-60280-9
work_keys_str_mv AT patrickmuller thenuclearchargeradiusof13c
AT matthiasheinz thenuclearchargeradiusof13c
AT phillipimgram thenuclearchargeradiusof13c
AT kristiankonig thenuclearchargeradiusof13c
AT bernhardmaass thenuclearchargeradiusof13c
AT takayukimiyagi thenuclearchargeradiusof13c
AT wilfriednortershauser thenuclearchargeradiusof13c
AT robertroth thenuclearchargeradiusof13c
AT achimschwenk thenuclearchargeradiusof13c
AT patrickmuller nuclearchargeradiusof13c
AT matthiasheinz nuclearchargeradiusof13c
AT phillipimgram nuclearchargeradiusof13c
AT kristiankonig nuclearchargeradiusof13c
AT bernhardmaass nuclearchargeradiusof13c
AT takayukimiyagi nuclearchargeradiusof13c
AT wilfriednortershauser nuclearchargeradiusof13c
AT robertroth nuclearchargeradiusof13c
AT achimschwenk nuclearchargeradiusof13c