On Log-Definite Tempered Combinatorial Sequences

This article is concerned with qualitative and quantitative refinements of the concepts of the log-convexity and log-concavity of positive sequences. A new class of tempered sequences is introduced, its basic properties are established and several interesting examples are provided. The new class ext...

Full description

Saved in:
Bibliographic Details
Main Authors: Tomislav Došlić, Biserka Kolarec
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/7/1179
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849738843220082688
author Tomislav Došlić
Biserka Kolarec
author_facet Tomislav Došlić
Biserka Kolarec
author_sort Tomislav Došlić
collection DOAJ
description This article is concerned with qualitative and quantitative refinements of the concepts of the log-convexity and log-concavity of positive sequences. A new class of tempered sequences is introduced, its basic properties are established and several interesting examples are provided. The new class extends the class of log-balanced sequences by including the sequences of similar growth rates, but of the opposite log-behavior. Special attention is paid to the sequences defined by two- and three-term linear recurrences with constant coefficients. For the special cases of generalized Fibonacci and Lucas sequences, we graphically illustrate the domains of their log-convexity and log-concavity. For an application, we establish the concyclicity of the points <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>a</mi><mrow><mn>2</mn><mi>n</mi></mrow></msub><msub><mi>a</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mfrac></mstyle><mo>,</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><msub><mi>a</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mfrac></mstyle></mfenced></semantics></math></inline-formula> for some classes of Horadam sequences <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>a</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> with positive terms.
format Article
id doaj-art-cf12afbaa48c43dbb750d4cf6afe3f02
institution DOAJ
issn 2227-7390
language English
publishDate 2025-04-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-cf12afbaa48c43dbb750d4cf6afe3f022025-08-20T03:06:27ZengMDPI AGMathematics2227-73902025-04-01137117910.3390/math13071179On Log-Definite Tempered Combinatorial SequencesTomislav Došlić0Biserka Kolarec1Department of Mathematics, Faculty of Civil Engineering, University of Zagreb, Kačićeva ulica 26, 10 000 Zagreb, CroatiaDepartment of Information Science and Mathematics, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10 000 Zagreb, CroatiaThis article is concerned with qualitative and quantitative refinements of the concepts of the log-convexity and log-concavity of positive sequences. A new class of tempered sequences is introduced, its basic properties are established and several interesting examples are provided. The new class extends the class of log-balanced sequences by including the sequences of similar growth rates, but of the opposite log-behavior. Special attention is paid to the sequences defined by two- and three-term linear recurrences with constant coefficients. For the special cases of generalized Fibonacci and Lucas sequences, we graphically illustrate the domains of their log-convexity and log-concavity. For an application, we establish the concyclicity of the points <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><mstyle scriptlevel="0" displaystyle="true"><mfrac><msub><mi>a</mi><mrow><mn>2</mn><mi>n</mi></mrow></msub><msub><mi>a</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mfrac></mstyle><mo>,</mo><mstyle scriptlevel="0" displaystyle="true"><mfrac><mn>1</mn><msub><mi>a</mi><mrow><mn>2</mn><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub></mfrac></mstyle></mfenced></semantics></math></inline-formula> for some classes of Horadam sequences <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo stretchy="false">(</mo><msub><mi>a</mi><mi>n</mi></msub><mo stretchy="false">)</mo></mrow></semantics></math></inline-formula> with positive terms.https://www.mdpi.com/2227-7390/13/7/1179tempered sequencelog-convexitylog-concavitylog-balancednessFibonacci numbersLucas numbers
spellingShingle Tomislav Došlić
Biserka Kolarec
On Log-Definite Tempered Combinatorial Sequences
Mathematics
tempered sequence
log-convexity
log-concavity
log-balancedness
Fibonacci numbers
Lucas numbers
title On Log-Definite Tempered Combinatorial Sequences
title_full On Log-Definite Tempered Combinatorial Sequences
title_fullStr On Log-Definite Tempered Combinatorial Sequences
title_full_unstemmed On Log-Definite Tempered Combinatorial Sequences
title_short On Log-Definite Tempered Combinatorial Sequences
title_sort on log definite tempered combinatorial sequences
topic tempered sequence
log-convexity
log-concavity
log-balancedness
Fibonacci numbers
Lucas numbers
url https://www.mdpi.com/2227-7390/13/7/1179
work_keys_str_mv AT tomislavdoslic onlogdefinitetemperedcombinatorialsequences
AT biserkakolarec onlogdefinitetemperedcombinatorialsequences