A predictor model of treatment resistance in schizophrenia using data from electronic health records.
<h4>Objectives</h4>To develop a prognostic tool of treatment resistant schizophrenia (TRS) in a large and diverse clinical cohort, with comprehensive coverage of patients using mental health services in four London boroughs.<h4>Methods</h4>We used the Least Absolute Shrinkage...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2022-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0274864&type=printable |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849337149063692288 |
|---|---|
| author | Giouliana Kadra-Scalzo Daniela Fonseca de Freitas Deborah Agbedjro Emma Francis Isobel Ridler Megan Pritchard Hitesh Shetty Aviv Segev Cecilia Casetta Sophie E Smart Anna Morris Johnny Downs Søren Rahn Christensen Nikolaj Bak Bruce J Kinon Daniel Stahl Richard D Hayes James H MacCabe |
| author_facet | Giouliana Kadra-Scalzo Daniela Fonseca de Freitas Deborah Agbedjro Emma Francis Isobel Ridler Megan Pritchard Hitesh Shetty Aviv Segev Cecilia Casetta Sophie E Smart Anna Morris Johnny Downs Søren Rahn Christensen Nikolaj Bak Bruce J Kinon Daniel Stahl Richard D Hayes James H MacCabe |
| author_sort | Giouliana Kadra-Scalzo |
| collection | DOAJ |
| description | <h4>Objectives</h4>To develop a prognostic tool of treatment resistant schizophrenia (TRS) in a large and diverse clinical cohort, with comprehensive coverage of patients using mental health services in four London boroughs.<h4>Methods</h4>We used the Least Absolute Shrinkage and Selection Operator (LASSO) for time-to-event data, to develop a risk prediction model from the first antipsychotic prescription to the development of TRS, using data from electronic health records.<h4>Results</h4>We reviewed the clinical records of 1,515 patients with a schizophrenia spectrum disorder and observed that 253 (17%) developed TRS. The Cox LASSO survival model produced an internally validated Harrel's C index of 0.60. A Kaplan-Meier curve indicated that the hazard of developing TRS remained constant over the observation period. Predictors of TRS were: having more inpatient days in the three months before and after the first antipsychotic, more community face-to-face clinical contact in the three months before the first antipsychotic, minor cognitive problems, and younger age at the time of the first antipsychotic.<h4>Conclusions</h4>Routinely collected information, readily available at the start of treatment, gives some indication of TRS but is unlikely to be adequate alone. These results provide further evidence that earlier onset is a risk factor for TRS. |
| format | Article |
| id | doaj-art-cec3c136cb3041788f4e25f83695c510 |
| institution | Kabale University |
| issn | 1932-6203 |
| language | English |
| publishDate | 2022-01-01 |
| publisher | Public Library of Science (PLoS) |
| record_format | Article |
| series | PLoS ONE |
| spelling | doaj-art-cec3c136cb3041788f4e25f83695c5102025-08-20T03:44:46ZengPublic Library of Science (PLoS)PLoS ONE1932-62032022-01-01179e027486410.1371/journal.pone.0274864A predictor model of treatment resistance in schizophrenia using data from electronic health records.Giouliana Kadra-ScalzoDaniela Fonseca de FreitasDeborah AgbedjroEmma FrancisIsobel RidlerMegan PritchardHitesh ShettyAviv SegevCecilia CasettaSophie E SmartAnna MorrisJohnny DownsSøren Rahn ChristensenNikolaj BakBruce J KinonDaniel StahlRichard D HayesJames H MacCabe<h4>Objectives</h4>To develop a prognostic tool of treatment resistant schizophrenia (TRS) in a large and diverse clinical cohort, with comprehensive coverage of patients using mental health services in four London boroughs.<h4>Methods</h4>We used the Least Absolute Shrinkage and Selection Operator (LASSO) for time-to-event data, to develop a risk prediction model from the first antipsychotic prescription to the development of TRS, using data from electronic health records.<h4>Results</h4>We reviewed the clinical records of 1,515 patients with a schizophrenia spectrum disorder and observed that 253 (17%) developed TRS. The Cox LASSO survival model produced an internally validated Harrel's C index of 0.60. A Kaplan-Meier curve indicated that the hazard of developing TRS remained constant over the observation period. Predictors of TRS were: having more inpatient days in the three months before and after the first antipsychotic, more community face-to-face clinical contact in the three months before the first antipsychotic, minor cognitive problems, and younger age at the time of the first antipsychotic.<h4>Conclusions</h4>Routinely collected information, readily available at the start of treatment, gives some indication of TRS but is unlikely to be adequate alone. These results provide further evidence that earlier onset is a risk factor for TRS.https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0274864&type=printable |
| spellingShingle | Giouliana Kadra-Scalzo Daniela Fonseca de Freitas Deborah Agbedjro Emma Francis Isobel Ridler Megan Pritchard Hitesh Shetty Aviv Segev Cecilia Casetta Sophie E Smart Anna Morris Johnny Downs Søren Rahn Christensen Nikolaj Bak Bruce J Kinon Daniel Stahl Richard D Hayes James H MacCabe A predictor model of treatment resistance in schizophrenia using data from electronic health records. PLoS ONE |
| title | A predictor model of treatment resistance in schizophrenia using data from electronic health records. |
| title_full | A predictor model of treatment resistance in schizophrenia using data from electronic health records. |
| title_fullStr | A predictor model of treatment resistance in schizophrenia using data from electronic health records. |
| title_full_unstemmed | A predictor model of treatment resistance in schizophrenia using data from electronic health records. |
| title_short | A predictor model of treatment resistance in schizophrenia using data from electronic health records. |
| title_sort | predictor model of treatment resistance in schizophrenia using data from electronic health records |
| url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0274864&type=printable |
| work_keys_str_mv | AT gioulianakadrascalzo apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT danielafonsecadefreitas apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT deborahagbedjro apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT emmafrancis apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT isobelridler apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT meganpritchard apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT hiteshshetty apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT avivsegev apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT ceciliacasetta apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT sophieesmart apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT annamorris apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT johnnydowns apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT sørenrahnchristensen apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT nikolajbak apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT brucejkinon apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT danielstahl apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT richarddhayes apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT jameshmaccabe apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT gioulianakadrascalzo predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT danielafonsecadefreitas predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT deborahagbedjro predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT emmafrancis predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT isobelridler predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT meganpritchard predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT hiteshshetty predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT avivsegev predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT ceciliacasetta predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT sophieesmart predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT annamorris predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT johnnydowns predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT sørenrahnchristensen predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT nikolajbak predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT brucejkinon predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT danielstahl predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT richarddhayes predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords AT jameshmaccabe predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords |