A predictor model of treatment resistance in schizophrenia using data from electronic health records.

<h4>Objectives</h4>To develop a prognostic tool of treatment resistant schizophrenia (TRS) in a large and diverse clinical cohort, with comprehensive coverage of patients using mental health services in four London boroughs.<h4>Methods</h4>We used the Least Absolute Shrinkage...

Full description

Saved in:
Bibliographic Details
Main Authors: Giouliana Kadra-Scalzo, Daniela Fonseca de Freitas, Deborah Agbedjro, Emma Francis, Isobel Ridler, Megan Pritchard, Hitesh Shetty, Aviv Segev, Cecilia Casetta, Sophie E Smart, Anna Morris, Johnny Downs, Søren Rahn Christensen, Nikolaj Bak, Bruce J Kinon, Daniel Stahl, Richard D Hayes, James H MacCabe
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2022-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0274864&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849337149063692288
author Giouliana Kadra-Scalzo
Daniela Fonseca de Freitas
Deborah Agbedjro
Emma Francis
Isobel Ridler
Megan Pritchard
Hitesh Shetty
Aviv Segev
Cecilia Casetta
Sophie E Smart
Anna Morris
Johnny Downs
Søren Rahn Christensen
Nikolaj Bak
Bruce J Kinon
Daniel Stahl
Richard D Hayes
James H MacCabe
author_facet Giouliana Kadra-Scalzo
Daniela Fonseca de Freitas
Deborah Agbedjro
Emma Francis
Isobel Ridler
Megan Pritchard
Hitesh Shetty
Aviv Segev
Cecilia Casetta
Sophie E Smart
Anna Morris
Johnny Downs
Søren Rahn Christensen
Nikolaj Bak
Bruce J Kinon
Daniel Stahl
Richard D Hayes
James H MacCabe
author_sort Giouliana Kadra-Scalzo
collection DOAJ
description <h4>Objectives</h4>To develop a prognostic tool of treatment resistant schizophrenia (TRS) in a large and diverse clinical cohort, with comprehensive coverage of patients using mental health services in four London boroughs.<h4>Methods</h4>We used the Least Absolute Shrinkage and Selection Operator (LASSO) for time-to-event data, to develop a risk prediction model from the first antipsychotic prescription to the development of TRS, using data from electronic health records.<h4>Results</h4>We reviewed the clinical records of 1,515 patients with a schizophrenia spectrum disorder and observed that 253 (17%) developed TRS. The Cox LASSO survival model produced an internally validated Harrel's C index of 0.60. A Kaplan-Meier curve indicated that the hazard of developing TRS remained constant over the observation period. Predictors of TRS were: having more inpatient days in the three months before and after the first antipsychotic, more community face-to-face clinical contact in the three months before the first antipsychotic, minor cognitive problems, and younger age at the time of the first antipsychotic.<h4>Conclusions</h4>Routinely collected information, readily available at the start of treatment, gives some indication of TRS but is unlikely to be adequate alone. These results provide further evidence that earlier onset is a risk factor for TRS.
format Article
id doaj-art-cec3c136cb3041788f4e25f83695c510
institution Kabale University
issn 1932-6203
language English
publishDate 2022-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj-art-cec3c136cb3041788f4e25f83695c5102025-08-20T03:44:46ZengPublic Library of Science (PLoS)PLoS ONE1932-62032022-01-01179e027486410.1371/journal.pone.0274864A predictor model of treatment resistance in schizophrenia using data from electronic health records.Giouliana Kadra-ScalzoDaniela Fonseca de FreitasDeborah AgbedjroEmma FrancisIsobel RidlerMegan PritchardHitesh ShettyAviv SegevCecilia CasettaSophie E SmartAnna MorrisJohnny DownsSøren Rahn ChristensenNikolaj BakBruce J KinonDaniel StahlRichard D HayesJames H MacCabe<h4>Objectives</h4>To develop a prognostic tool of treatment resistant schizophrenia (TRS) in a large and diverse clinical cohort, with comprehensive coverage of patients using mental health services in four London boroughs.<h4>Methods</h4>We used the Least Absolute Shrinkage and Selection Operator (LASSO) for time-to-event data, to develop a risk prediction model from the first antipsychotic prescription to the development of TRS, using data from electronic health records.<h4>Results</h4>We reviewed the clinical records of 1,515 patients with a schizophrenia spectrum disorder and observed that 253 (17%) developed TRS. The Cox LASSO survival model produced an internally validated Harrel's C index of 0.60. A Kaplan-Meier curve indicated that the hazard of developing TRS remained constant over the observation period. Predictors of TRS were: having more inpatient days in the three months before and after the first antipsychotic, more community face-to-face clinical contact in the three months before the first antipsychotic, minor cognitive problems, and younger age at the time of the first antipsychotic.<h4>Conclusions</h4>Routinely collected information, readily available at the start of treatment, gives some indication of TRS but is unlikely to be adequate alone. These results provide further evidence that earlier onset is a risk factor for TRS.https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0274864&type=printable
spellingShingle Giouliana Kadra-Scalzo
Daniela Fonseca de Freitas
Deborah Agbedjro
Emma Francis
Isobel Ridler
Megan Pritchard
Hitesh Shetty
Aviv Segev
Cecilia Casetta
Sophie E Smart
Anna Morris
Johnny Downs
Søren Rahn Christensen
Nikolaj Bak
Bruce J Kinon
Daniel Stahl
Richard D Hayes
James H MacCabe
A predictor model of treatment resistance in schizophrenia using data from electronic health records.
PLoS ONE
title A predictor model of treatment resistance in schizophrenia using data from electronic health records.
title_full A predictor model of treatment resistance in schizophrenia using data from electronic health records.
title_fullStr A predictor model of treatment resistance in schizophrenia using data from electronic health records.
title_full_unstemmed A predictor model of treatment resistance in schizophrenia using data from electronic health records.
title_short A predictor model of treatment resistance in schizophrenia using data from electronic health records.
title_sort predictor model of treatment resistance in schizophrenia using data from electronic health records
url https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0274864&type=printable
work_keys_str_mv AT gioulianakadrascalzo apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT danielafonsecadefreitas apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT deborahagbedjro apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT emmafrancis apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT isobelridler apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT meganpritchard apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT hiteshshetty apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT avivsegev apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT ceciliacasetta apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT sophieesmart apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT annamorris apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT johnnydowns apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT sørenrahnchristensen apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT nikolajbak apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT brucejkinon apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT danielstahl apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT richarddhayes apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT jameshmaccabe apredictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT gioulianakadrascalzo predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT danielafonsecadefreitas predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT deborahagbedjro predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT emmafrancis predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT isobelridler predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT meganpritchard predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT hiteshshetty predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT avivsegev predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT ceciliacasetta predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT sophieesmart predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT annamorris predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT johnnydowns predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT sørenrahnchristensen predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT nikolajbak predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT brucejkinon predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT danielstahl predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT richarddhayes predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords
AT jameshmaccabe predictormodeloftreatmentresistanceinschizophreniausingdatafromelectronichealthrecords