A Numerical Investigation on the Structure of the Zeros of Euler Polynomials

Using numerical investigation, we observe the behavior of complex roots of the Euler polynomials En(x). By means of numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the Euler polynomials En(x). Finally, we show the Julia set of Newton iteration function R(...

Full description

Saved in:
Bibliographic Details
Main Authors: C. S. Ryoo, J. Y. Kang
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2015/174173
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832548637920460800
author C. S. Ryoo
J. Y. Kang
author_facet C. S. Ryoo
J. Y. Kang
author_sort C. S. Ryoo
collection DOAJ
description Using numerical investigation, we observe the behavior of complex roots of the Euler polynomials En(x). By means of numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the Euler polynomials En(x). Finally, we show the Julia set of Newton iteration function R(x)=x-En(x)/En′(x).
format Article
id doaj-art-cebd9e6da7c74f0aa1326ea6d6b2260f
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2015-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-cebd9e6da7c74f0aa1326ea6d6b2260f2025-02-03T06:13:29ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2015-01-01201510.1155/2015/174173174173A Numerical Investigation on the Structure of the Zeros of Euler PolynomialsC. S. Ryoo0J. Y. Kang1Department of Mathematics, Hannam University, Daejeon 306-791, Republic of KoreaDepartment of Mathematics, Hannam University, Daejeon 306-791, Republic of KoreaUsing numerical investigation, we observe the behavior of complex roots of the Euler polynomials En(x). By means of numerical experiments, we demonstrate a remarkably regular structure of the complex roots of the Euler polynomials En(x). Finally, we show the Julia set of Newton iteration function R(x)=x-En(x)/En′(x).http://dx.doi.org/10.1155/2015/174173
spellingShingle C. S. Ryoo
J. Y. Kang
A Numerical Investigation on the Structure of the Zeros of Euler Polynomials
Discrete Dynamics in Nature and Society
title A Numerical Investigation on the Structure of the Zeros of Euler Polynomials
title_full A Numerical Investigation on the Structure of the Zeros of Euler Polynomials
title_fullStr A Numerical Investigation on the Structure of the Zeros of Euler Polynomials
title_full_unstemmed A Numerical Investigation on the Structure of the Zeros of Euler Polynomials
title_short A Numerical Investigation on the Structure of the Zeros of Euler Polynomials
title_sort numerical investigation on the structure of the zeros of euler polynomials
url http://dx.doi.org/10.1155/2015/174173
work_keys_str_mv AT csryoo anumericalinvestigationonthestructureofthezerosofeulerpolynomials
AT jykang anumericalinvestigationonthestructureofthezerosofeulerpolynomials
AT csryoo numericalinvestigationonthestructureofthezerosofeulerpolynomials
AT jykang numericalinvestigationonthestructureofthezerosofeulerpolynomials