Hierarchical Artificial Bee Colony Optimizer with Divide-and-Conquer and Crossover for Multilevel Threshold Image Segmentation
This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization (HABC), for multilevel threshold image segmentation, which employs a pool of optimal foraging strategies to extend the classical artificial bee colony framework to a cooperative and hierarchic...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2014-01-01
|
| Series: | Discrete Dynamics in Nature and Society |
| Online Access: | http://dx.doi.org/10.1155/2014/941534 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization (HABC), for multilevel threshold image segmentation, which employs a pool of optimal foraging strategies to extend the classical artificial bee colony framework to a cooperative and hierarchical fashion. In the proposed hierarchical model, the higher-level species incorporates the enhanced information exchange mechanism based on crossover operator to enhance the global search ability between species. In the bottom level, with the divide-and-conquer approach, each subpopulation runs the original ABC method in parallel to part-dimensional optimum, which can be aggregated into a complete solution for the upper level. The experimental results for comparing HABC with several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm. Furthermore, we applied the HABC to the multilevel image segmentation problem. Experimental results of the new algorithm on a variety of images demonstrated the performance superiority of the proposed algorithm. |
|---|---|
| ISSN: | 1026-0226 1607-887X |