Bayesian inference of a spatially dependent semi-Markovian model with application to Madagascar Covid'19 data.
This article presents an approach to stochastic analysis of disease dynamics. We develop an explicit semi-Markovian model that accounts for spatial dependence, operating in discrete time over a finite state space. The model allowed us to have a propagation model conditioned by neighboring states and...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2025-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://doi.org/10.1371/journal.pone.0326264 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This article presents an approach to stochastic analysis of disease dynamics. We develop an explicit semi-Markovian model that accounts for spatial dependence, operating in discrete time over a finite state space. The model allowed us to have a propagation model conditioned by neighboring states and quantifies two key characteristics : spatial propagation timescales and propagation law in a region dependent on neighboring states. The model is inferred from data collected on the spread of Covid'19 in Madagascar's 22 regions, using the Bayesian approach to get a better idea of model parameter values. The result has demonstrated the effect of neighborhoods on the propagation dynamics of diseases. We conclude with a discussion of potential future theoretical developments. |
|---|---|
| ISSN: | 1932-6203 |