Thermal analysis of ternary hybrid nanofluid flow in convergent/divergent channel using Box-Behnken design of response surface methodology

Convergent/divergent channels represent a critical advancement in thermal management systems, offering enhanced heat transfer capabilities through geometrically optimized flow paths. This study investigates the thermal and hydrodynamic characteristics of UO2-ZnO-Fe3O4/EG-water ternary hybrid nanoflu...

Full description

Saved in:
Bibliographic Details
Main Authors: Ibrahim Mahariq, C.M. Mohana, B. Rushi Kumar, Kezzar Mohamed, Mohamed Rafik SARI, Hamiden Abd El-Wahed Khalifa, Sunitha Nagarathnam
Format: Article
Language:English
Published: Elsevier 2025-07-01
Series:Results in Physics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2211379725001871
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850279471645458432
author Ibrahim Mahariq
C.M. Mohana
B. Rushi Kumar
Kezzar Mohamed
Mohamed Rafik SARI
Hamiden Abd El-Wahed Khalifa
Sunitha Nagarathnam
author_facet Ibrahim Mahariq
C.M. Mohana
B. Rushi Kumar
Kezzar Mohamed
Mohamed Rafik SARI
Hamiden Abd El-Wahed Khalifa
Sunitha Nagarathnam
author_sort Ibrahim Mahariq
collection DOAJ
description Convergent/divergent channels represent a critical advancement in thermal management systems, offering enhanced heat transfer capabilities through geometrically optimized flow paths. This study investigates the thermal and hydrodynamic characteristics of UO2-ZnO-Fe3O4/EG-water ternary hybrid nanofluid in rotating convergent/divergent channels with magnetohydrodynamic and radiation effects, a critical area for enhancing heat transfer efficiency in modern thermal management systems. Employing the Runge-Kutta-Fehlberg method coupled with a Box-Behnken design approach, we analyzed how key parameters affect flow behavior and heat transfer performance. The numerical simulations reveal that increasing the nanoparticle volume fraction from 0.01 to 0.06 enhances the Nusselt number by 27.3 %, while an increase in the magnetic parameter reduces the friction coefficient by 41.2 %. The Reynolds number demonstrates a strong positive correlation with the Nusselt number (R2 = 0.978). Maximum heat transfer (Nu = 33.4859) achieved at: α = 1°, Re = 40, φ = 3 %, Ha = 50, Rd = 1, Kn = 0.04, De = 0.5, Ro = 50, ε = 0, λ = 0.5 whereas a minimum flow resistance (Cf = -2.60454) occurred at: α = -3°, Re = 60, φ = 6 %, Ha = 25, Rd = 1, Kn = 0, De = 0.5, Ro = 50, ε = 0.2, λ = 0.5. For the convergent channel configuration (α = -3°), the friction coefficient was 28.3 % higher than in the divergent channel (α = 5°) under identical flow conditions. This work advances the field beyond previous studies by comprehensively analyzing the synergistic effects of rotation, magnetohydrodynamic, radiation, and channel geometry on the performance of ternary hybrid nanofluids, providing crucial insights for designing more efficient thermal systems in electronics cooling, heat exchangers, and industrial processing applications.
format Article
id doaj-art-ce69208add9a40cfae4d7ec3b23d5ee5
institution OA Journals
issn 2211-3797
language English
publishDate 2025-07-01
publisher Elsevier
record_format Article
series Results in Physics
spelling doaj-art-ce69208add9a40cfae4d7ec3b23d5ee52025-08-20T01:49:04ZengElsevierResults in Physics2211-37972025-07-017410829310.1016/j.rinp.2025.108293Thermal analysis of ternary hybrid nanofluid flow in convergent/divergent channel using Box-Behnken design of response surface methodologyIbrahim Mahariq0C.M. Mohana1B. Rushi Kumar2Kezzar Mohamed3Mohamed Rafik SARI4Hamiden Abd El-Wahed Khalifa5Sunitha Nagarathnam6University College, Korea University, Seoul 02481, South Korea; Najjad Zeenni Faculty of Engineering, Al Quds University, Jerusalem, Palestine; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Applied Science Research Center, Applied Science Private University, Amman, Jordan; GUST Engineering and Applied Innovation Research Center (GEAR), Gulf University for Science and Technology, Mishref, KuwaitDepartment of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, IndiaDepartment of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India; Corresponding authors.Materials and Energy Engineering Laboratory (LMGE), Technology Department, Faculty of Technology, 20 Aout 1955 University of Skikda, PO Box 26, 21000 Skikda, Algeria; Corresponding authors.Mechanics of Materials and Plant Maintenance Research Laboratory (LR3MI), Mechanical Engineering Department, Faculty of Engineering, Badji Mokhtar University of Annaba (UBMA), PO Box 12, 23052 Annaba, AlgeriaDepartment of Operations and Management Research, Faculty of Graduate Studies for Statistical Research, Cairo University, Giza 12613,EgyptCentre for Research in Computational and Applied Mechanics, University of Cape Town, Rondebosch 7701, South AfricaConvergent/divergent channels represent a critical advancement in thermal management systems, offering enhanced heat transfer capabilities through geometrically optimized flow paths. This study investigates the thermal and hydrodynamic characteristics of UO2-ZnO-Fe3O4/EG-water ternary hybrid nanofluid in rotating convergent/divergent channels with magnetohydrodynamic and radiation effects, a critical area for enhancing heat transfer efficiency in modern thermal management systems. Employing the Runge-Kutta-Fehlberg method coupled with a Box-Behnken design approach, we analyzed how key parameters affect flow behavior and heat transfer performance. The numerical simulations reveal that increasing the nanoparticle volume fraction from 0.01 to 0.06 enhances the Nusselt number by 27.3 %, while an increase in the magnetic parameter reduces the friction coefficient by 41.2 %. The Reynolds number demonstrates a strong positive correlation with the Nusselt number (R2 = 0.978). Maximum heat transfer (Nu = 33.4859) achieved at: α = 1°, Re = 40, φ = 3 %, Ha = 50, Rd = 1, Kn = 0.04, De = 0.5, Ro = 50, ε = 0, λ = 0.5 whereas a minimum flow resistance (Cf = -2.60454) occurred at: α = -3°, Re = 60, φ = 6 %, Ha = 25, Rd = 1, Kn = 0, De = 0.5, Ro = 50, ε = 0.2, λ = 0.5. For the convergent channel configuration (α = -3°), the friction coefficient was 28.3 % higher than in the divergent channel (α = 5°) under identical flow conditions. This work advances the field beyond previous studies by comprehensively analyzing the synergistic effects of rotation, magnetohydrodynamic, radiation, and channel geometry on the performance of ternary hybrid nanofluids, providing crucial insights for designing more efficient thermal systems in electronics cooling, heat exchangers, and industrial processing applications.http://www.sciencedirect.com/science/article/pii/S2211379725001871Ternary Hybrid Nanofluids Convergent/Divergent Channels Non-linear Solar Radiation Variable thermal conductivity Heat Transfer Enhancement Box-Behnken Design
spellingShingle Ibrahim Mahariq
C.M. Mohana
B. Rushi Kumar
Kezzar Mohamed
Mohamed Rafik SARI
Hamiden Abd El-Wahed Khalifa
Sunitha Nagarathnam
Thermal analysis of ternary hybrid nanofluid flow in convergent/divergent channel using Box-Behnken design of response surface methodology
Results in Physics
Ternary Hybrid Nanofluids 
Convergent/Divergent Channels 
Non-linear Solar Radiation 
Variable thermal conductivity 
Heat Transfer Enhancement 
Box-Behnken Design
title Thermal analysis of ternary hybrid nanofluid flow in convergent/divergent channel using Box-Behnken design of response surface methodology
title_full Thermal analysis of ternary hybrid nanofluid flow in convergent/divergent channel using Box-Behnken design of response surface methodology
title_fullStr Thermal analysis of ternary hybrid nanofluid flow in convergent/divergent channel using Box-Behnken design of response surface methodology
title_full_unstemmed Thermal analysis of ternary hybrid nanofluid flow in convergent/divergent channel using Box-Behnken design of response surface methodology
title_short Thermal analysis of ternary hybrid nanofluid flow in convergent/divergent channel using Box-Behnken design of response surface methodology
title_sort thermal analysis of ternary hybrid nanofluid flow in convergent divergent channel using box behnken design of response surface methodology
topic Ternary Hybrid Nanofluids 
Convergent/Divergent Channels 
Non-linear Solar Radiation 
Variable thermal conductivity 
Heat Transfer Enhancement 
Box-Behnken Design
url http://www.sciencedirect.com/science/article/pii/S2211379725001871
work_keys_str_mv AT ibrahimmahariq thermalanalysisofternaryhybridnanofluidflowinconvergentdivergentchannelusingboxbehnkendesignofresponsesurfacemethodology
AT cmmohana thermalanalysisofternaryhybridnanofluidflowinconvergentdivergentchannelusingboxbehnkendesignofresponsesurfacemethodology
AT brushikumar thermalanalysisofternaryhybridnanofluidflowinconvergentdivergentchannelusingboxbehnkendesignofresponsesurfacemethodology
AT kezzarmohamed thermalanalysisofternaryhybridnanofluidflowinconvergentdivergentchannelusingboxbehnkendesignofresponsesurfacemethodology
AT mohamedrafiksari thermalanalysisofternaryhybridnanofluidflowinconvergentdivergentchannelusingboxbehnkendesignofresponsesurfacemethodology
AT hamidenabdelwahedkhalifa thermalanalysisofternaryhybridnanofluidflowinconvergentdivergentchannelusingboxbehnkendesignofresponsesurfacemethodology
AT sunithanagarathnam thermalanalysisofternaryhybridnanofluidflowinconvergentdivergentchannelusingboxbehnkendesignofresponsesurfacemethodology