A new constant in Banach spaces based on the Zb$ \check{a} $ganu constant $ C_{Z}(B) $

In Banach spaces, first we present a new geometric constant, $ C_{Z}^{(q)}(t, B) $, which is closely related to the Zb$ \check{a} $ganu constant. We prove that $ \frac{(t+2)^{q}}{2^{q-1}\left(2^{q-1}+t^{q}\right)} $ and $ \frac{4}{3} $ are respectively the lower and upper bounds for $ C_{Z}^{(q)}(t,...

Full description

Saved in:
Bibliographic Details
Main Authors: Qian Li, Zhouping Yin, Yuxin Wang, Qi Liu, Hongmei Zhang
Format: Article
Language:English
Published: AIMS Press 2025-03-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2025296
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850216303109865472
author Qian Li
Zhouping Yin
Yuxin Wang
Qi Liu
Hongmei Zhang
author_facet Qian Li
Zhouping Yin
Yuxin Wang
Qi Liu
Hongmei Zhang
author_sort Qian Li
collection DOAJ
description In Banach spaces, first we present a new geometric constant, $ C_{Z}^{(q)}(t, B) $, which is closely related to the Zb$ \check{a} $ganu constant. We prove that $ \frac{(t+2)^{q}}{2^{q-1}\left(2^{q-1}+t^{q}\right)} $ and $ \frac{4}{3} $ are respectively the lower and upper bounds for $ C_{Z}^{(q)}(t, B) $. Furthermore, we also derive that $ C_{Z}^{(q)}(t, B) = C_{Z}^{(q)}(t, \widetilde{B}) $, where $ \widetilde{B} $ denotes the ultrapower spaces of $ B $. Then, we can establish certain sufficient conditions that ensure a Banach spaces possesses a normal structure, which involve different constants such as the Zb$ \check{a} $ganu constant and Domínguez–Benavides coefficient.
format Article
id doaj-art-ce58b063248446d78a30aebac76e26ec
institution OA Journals
issn 2473-6988
language English
publishDate 2025-03-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj-art-ce58b063248446d78a30aebac76e26ec2025-08-20T02:08:20ZengAIMS PressAIMS Mathematics2473-69882025-03-011036480649110.3934/math.2025296A new constant in Banach spaces based on the Zb$ \check{a} $ganu constant $ C_{Z}(B) $Qian Li0Zhouping Yin1Yuxin Wang2Qi Liu3Hongmei Zhang4School of Mathematics and Physics, Anqing Normal University, Anqing 246133, ChinaSchool of Mathematics and Physics, Anqing Normal University, Anqing 246133, ChinaSchool of Mathematics and Physics, Anqing Normal University, Anqing 246133, ChinaSchool of Mathematics and Physics, Anqing Normal University, Anqing 246133, ChinaSchool of Mathematics and Physics, Anqing Normal University, Anqing 246133, ChinaIn Banach spaces, first we present a new geometric constant, $ C_{Z}^{(q)}(t, B) $, which is closely related to the Zb$ \check{a} $ganu constant. We prove that $ \frac{(t+2)^{q}}{2^{q-1}\left(2^{q-1}+t^{q}\right)} $ and $ \frac{4}{3} $ are respectively the lower and upper bounds for $ C_{Z}^{(q)}(t, B) $. Furthermore, we also derive that $ C_{Z}^{(q)}(t, B) = C_{Z}^{(q)}(t, \widetilde{B}) $, where $ \widetilde{B} $ denotes the ultrapower spaces of $ B $. Then, we can establish certain sufficient conditions that ensure a Banach spaces possesses a normal structure, which involve different constants such as the Zb$ \check{a} $ganu constant and Domínguez–Benavides coefficient.https://www.aimspress.com/article/doi/10.3934/math.2025296geometric constantsbanach spacezb$ \check{a} $ganu constantultrapower spacenormal structure
spellingShingle Qian Li
Zhouping Yin
Yuxin Wang
Qi Liu
Hongmei Zhang
A new constant in Banach spaces based on the Zb$ \check{a} $ganu constant $ C_{Z}(B) $
AIMS Mathematics
geometric constants
banach space
zb$ \check{a} $ganu constant
ultrapower space
normal structure
title A new constant in Banach spaces based on the Zb$ \check{a} $ganu constant $ C_{Z}(B) $
title_full A new constant in Banach spaces based on the Zb$ \check{a} $ganu constant $ C_{Z}(B) $
title_fullStr A new constant in Banach spaces based on the Zb$ \check{a} $ganu constant $ C_{Z}(B) $
title_full_unstemmed A new constant in Banach spaces based on the Zb$ \check{a} $ganu constant $ C_{Z}(B) $
title_short A new constant in Banach spaces based on the Zb$ \check{a} $ganu constant $ C_{Z}(B) $
title_sort new constant in banach spaces based on the zb check a ganu constant c z b
topic geometric constants
banach space
zb$ \check{a} $ganu constant
ultrapower space
normal structure
url https://www.aimspress.com/article/doi/10.3934/math.2025296
work_keys_str_mv AT qianli anewconstantinbanachspacesbasedonthezbcheckaganuconstantczb
AT zhoupingyin anewconstantinbanachspacesbasedonthezbcheckaganuconstantczb
AT yuxinwang anewconstantinbanachspacesbasedonthezbcheckaganuconstantczb
AT qiliu anewconstantinbanachspacesbasedonthezbcheckaganuconstantczb
AT hongmeizhang anewconstantinbanachspacesbasedonthezbcheckaganuconstantczb
AT qianli newconstantinbanachspacesbasedonthezbcheckaganuconstantczb
AT zhoupingyin newconstantinbanachspacesbasedonthezbcheckaganuconstantczb
AT yuxinwang newconstantinbanachspacesbasedonthezbcheckaganuconstantczb
AT qiliu newconstantinbanachspacesbasedonthezbcheckaganuconstantczb
AT hongmeizhang newconstantinbanachspacesbasedonthezbcheckaganuconstantczb