3-dimensional piecewise linear and quadratic vector fields with invariant spheres

We consider the class $\mathcal{X}$ of $3$-dimensional piecewise smooth vector fields that admit a first integral which leaves invariant any sphere centered at the origin. In this class, we prove that a linear vector field does not admit isolated invariant cones. Moreover, we provide the existence o...

Full description

Saved in:
Bibliographic Details
Main Authors: Claudio Buzzi, Ana Livia Rodero, Joan Torregrosa
Format: Article
Language:English
Published: University of Szeged 2024-08-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11057
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846091042239021056
author Claudio Buzzi
Ana Livia Rodero
Joan Torregrosa
author_facet Claudio Buzzi
Ana Livia Rodero
Joan Torregrosa
author_sort Claudio Buzzi
collection DOAJ
description We consider the class $\mathcal{X}$ of $3$-dimensional piecewise smooth vector fields that admit a first integral which leaves invariant any sphere centered at the origin. In this class, we prove that a linear vector field does not admit isolated invariant cones. Moreover, we provide the existence of at least ten $1$-parameter families of crossing closed trajectories for quadratic vector fields in $\mathcal{X}$.
format Article
id doaj-art-ce4ae98b7dd14aa69ba4c99dda9f07d8
institution Kabale University
issn 1417-3875
language English
publishDate 2024-08-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj-art-ce4ae98b7dd14aa69ba4c99dda9f07d82025-01-15T21:24:58ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752024-08-0120244312710.14232/ejqtde.2024.1.43110573-dimensional piecewise linear and quadratic vector fields with invariant spheresClaudio Buzzi0https://orcid.org/0000-0003-2037-8417Ana Livia RoderoJoan Torregrosa1Instituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, BrazilInstituto de Biociências Letras e Ciências Exatas, Universidade Estadual Paulista, São José do Rio Preto, Brazil & Departamento de Matemática, Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, BrazilWe consider the class $\mathcal{X}$ of $3$-dimensional piecewise smooth vector fields that admit a first integral which leaves invariant any sphere centered at the origin. In this class, we prove that a linear vector field does not admit isolated invariant cones. Moreover, we provide the existence of at least ten $1$-parameter families of crossing closed trajectories for quadratic vector fields in $\mathcal{X}$.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11057piecewise smooth vector fields with invariant spheresinvariant cones$1$-parameter families of closed trajectories
spellingShingle Claudio Buzzi
Ana Livia Rodero
Joan Torregrosa
3-dimensional piecewise linear and quadratic vector fields with invariant spheres
Electronic Journal of Qualitative Theory of Differential Equations
piecewise smooth vector fields with invariant spheres
invariant cones
$1$-parameter families of closed trajectories
title 3-dimensional piecewise linear and quadratic vector fields with invariant spheres
title_full 3-dimensional piecewise linear and quadratic vector fields with invariant spheres
title_fullStr 3-dimensional piecewise linear and quadratic vector fields with invariant spheres
title_full_unstemmed 3-dimensional piecewise linear and quadratic vector fields with invariant spheres
title_short 3-dimensional piecewise linear and quadratic vector fields with invariant spheres
title_sort 3 dimensional piecewise linear and quadratic vector fields with invariant spheres
topic piecewise smooth vector fields with invariant spheres
invariant cones
$1$-parameter families of closed trajectories
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=11057
work_keys_str_mv AT claudiobuzzi 3dimensionalpiecewiselinearandquadraticvectorfieldswithinvariantspheres
AT analiviarodero 3dimensionalpiecewiselinearandquadraticvectorfieldswithinvariantspheres
AT joantorregrosa 3dimensionalpiecewiselinearandquadraticvectorfieldswithinvariantspheres