Free Convection Nanofluid Flow in the Stagnation-Point Region of a Three-Dimensional Body

Analytical results are presented for a steady three-dimensional free convection flow in the stagnation point region over a general curved isothermal surface placed in a nanofluid. The momentum equations in x- and y-directions, energy balance equation, and nanoparticle concentration equation are redu...

Full description

Saved in:
Bibliographic Details
Main Authors: Umer Farooq, Hang Xu
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:The Scientific World Journal
Online Access:http://dx.doi.org/10.1155/2014/158269
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Analytical results are presented for a steady three-dimensional free convection flow in the stagnation point region over a general curved isothermal surface placed in a nanofluid. The momentum equations in x- and y-directions, energy balance equation, and nanoparticle concentration equation are reduced to a set of four fully coupled nonlinear differential equations under appropriate similarity transformations. The well known technique optimal homotopy analysis method (OHAM) is used to obtain the exact solution explicitly, whose convergence is then checked in detail. Besides, the effects of the physical parameters, such as the Lewis number, the Brownian motion parameter, the thermophoresis parameter, and the buoyancy ratio on the profiles of velocities, temperature, and concentration, are studied and discussed. Furthermore the local skin friction coefficients in x- and y-directions, the local Nusselt number, and the local Sherwood number are examined for various values of the physical parameters.
ISSN:2356-6140
1537-744X