Enhancing Scalability in On-Demand Video Streaming Services for P2P Systems

Recently, many video applications like video telephony, video conferencing, Video-on-Demand (VoD), and so forth have produced heterogeneous consumers in the Internet. In such a scenario, media servers play vital role when a large number of concurrent requests are sent by heterogeneous users. Moreove...

Full description

Saved in:
Bibliographic Details
Main Authors: R. Arockia Xavier Annie, P. Yogesh, A. Kannan
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Advances in Multimedia
Online Access:http://dx.doi.org/10.1155/2012/109619
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Recently, many video applications like video telephony, video conferencing, Video-on-Demand (VoD), and so forth have produced heterogeneous consumers in the Internet. In such a scenario, media servers play vital role when a large number of concurrent requests are sent by heterogeneous users. Moreover, the server and distributed client systems participating in the Internet communication have to provide suitable resources to heterogeneous users to meet their requirements satisfactorily. The challenges in providing suitable resources are to analyze the user service pattern, bandwidth and buffer availability, nature of applications used, and Quality of Service (QoS) requirements for the heterogeneous users. Therefore, it is necessary to provide suitable techniques to handle these challenges. In this paper, we propose a framework for peer-to-peer- (P2P-) based VoD service in order to provide effective video streaming. It consists of four functional modules, namely, Quality Preserving Multivariate Video Model (QPMVM) for efficient server management, tracker for efficient peer management, heuristic-based content distribution, and light weight incentivized sharing mechanism. The first two of these modules are confined to a single entity of the framework while the other two are distributed across entities. Experimental results show that the proposed framework avoids overloading the server, increases the number of clients served, and does not compromise on QoS, irrespective of the fact that the expected framework is slightly reduced.
ISSN:1687-5680
1687-5699