Dynamics and density function of a HTLV-1 model with latent infection and Ornstein-Uhlenbeck process
This paper examines the propagation dynamics of a T-lymphoblastic leukemia virus type Ⅰ (HTLV-1) infection model in a stochastic environment combined with an Ornstein-Uhlenbeck process. In conjunction with the theory of Lyapunov functions, we initially demonstrate the existence of a unique global so...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2024-12-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.20241728 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper examines the propagation dynamics of a T-lymphoblastic leukemia virus type Ⅰ (HTLV-1) infection model in a stochastic environment combined with an Ornstein-Uhlenbeck process. In conjunction with the theory of Lyapunov functions, we initially demonstrate the existence of a unique global solution to the model when initial values are positive. Subsequently, we establish a sufficient condition for the existence of a stochastic model stationary distribution. Based on this condition, the local probability density function expression of the model near the quasi-equilibrium point is solved by combining it with the Fokker-Planck equation. Subsequently, we delineate the pivotal conditions that precipitate the extinction of the disease. Finally, we select suitable data for numerical simulation intending to corroborate the theorem previously established. |
---|---|
ISSN: | 2473-6988 |