Improving aboveground biomass density mapping of arid and semi-arid vegetation by combining GEDI LiDAR, Sentinel-1/2 imagery and field data

Accurate estimates of forest aboveground biomass density (AGBD) are essential to guide mitigation strategies for climate change. NASA's Global Ecosystem Dynamics Investigation (GEDI) project delivers full-waveform LiDAR data and provides a unique opportunity to improve AGBD estimates. However,...

Full description

Saved in:
Bibliographic Details
Main Authors: Luis A. Hernández-Martínez, Juan Manuel Dupuy-Rada, Alfonso Medel-Narváez, Carlos Portillo-Quintero, José Luis Hernández-Stefanoni
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:Science of Remote Sensing
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666017225000100
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849329184636141568
author Luis A. Hernández-Martínez
Juan Manuel Dupuy-Rada
Alfonso Medel-Narváez
Carlos Portillo-Quintero
José Luis Hernández-Stefanoni
author_facet Luis A. Hernández-Martínez
Juan Manuel Dupuy-Rada
Alfonso Medel-Narváez
Carlos Portillo-Quintero
José Luis Hernández-Stefanoni
author_sort Luis A. Hernández-Martínez
collection DOAJ
description Accurate estimates of forest aboveground biomass density (AGBD) are essential to guide mitigation strategies for climate change. NASA's Global Ecosystem Dynamics Investigation (GEDI) project delivers full-waveform LiDAR data and provides a unique opportunity to improve AGBD estimates. However, global GEDI estimates (GEDI-L4A) have some constraints, such as lack of full coverage of AGBD maps and scarcity of training data for some biomes, particularly in arid areas. Moreover, uncertainties remain about the type of GEDI footprint that best penetrates the canopy and yields accurate vegetation structure metrics. This study estimates forest biomass of arid and semi-arid zones in two stages. First, a model was fitted to predict AGBD by relating GEDI and field data from different vegetation types, including xeric shrubland. Second, different footprint qualities were evaluated, and their AGBD was related to images from Sentinel-1 and -2 satellites to produce a wall-to-wall map of AGBD. The model fitted with field data and GEDI showed adequate performance (%RMSE = 45.0) and produced more accurate estimates than GEDI-L4A (%RMSE = 84.6). The wall-to-wall mapping model also performed well (%RMSE = 37.0) and substantially reduced the underestimation of AGBD for arid zones. This study highlights the advantages of fitting new models for AGBD estimation from GEDI and local field data, whose combination with satellite imagery yielded accurate wall-to-wall AGBD estimates with a 10 m resolution. The results of this study contribute new perspectives to improve the accuracy of AGBD estimates in arid zones, whose role in climate change mitigation may be markedly underestimated.
format Article
id doaj-art-cdfb9d8d34f94c918dd66dcf3de90529
institution Kabale University
issn 2666-0172
language English
publishDate 2025-06-01
publisher Elsevier
record_format Article
series Science of Remote Sensing
spelling doaj-art-cdfb9d8d34f94c918dd66dcf3de905292025-08-20T03:47:20ZengElsevierScience of Remote Sensing2666-01722025-06-011110020410.1016/j.srs.2025.100204Improving aboveground biomass density mapping of arid and semi-arid vegetation by combining GEDI LiDAR, Sentinel-1/2 imagery and field dataLuis A. Hernández-Martínez0Juan Manuel Dupuy-Rada1Alfonso Medel-Narváez2Carlos Portillo-Quintero3José Luis Hernández-Stefanoni4Centro de Investigación Científica de Yucatán A.C, Unidad de Recursos Naturales, Calle 43 # 130. Colonia Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, Mexico; Campo Experimental Todos Santos del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Calle Agricultura No. 1555 Entre Calle México y Durango, La Paz, 23070, Baja California Sur, MexicoCentro de Investigación Científica de Yucatán A.C, Unidad de Recursos Naturales, Calle 43 # 130. Colonia Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, Mexico; Laboratorio Nacional CONAHCyT de Biología del Cambio Climático, SECIHTI, MexicoCentro de Investigaciones Biológicas del Noroeste, La Paz, Baja California Sur, MexicoDepartment of Natural Resources Management, College of Agricultural Sciences and Natural Resources Management, Texas Tech University, Lubbock, TX, 79401, USACentro de Investigación Científica de Yucatán A.C, Unidad de Recursos Naturales, Calle 43 # 130. Colonia Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán, Mexico; Laboratorio Nacional CONAHCyT de Biología del Cambio Climático, SECIHTI, Mexico; Corresponding author. Centro de Investigación Científica de Yucatán A.C, Unidad de Recursos Naturales, Calle 43 # 130. Colonia Chuburná de Hidalgo, C.P. 97200, Mérida, Yucatán. Mexico.Accurate estimates of forest aboveground biomass density (AGBD) are essential to guide mitigation strategies for climate change. NASA's Global Ecosystem Dynamics Investigation (GEDI) project delivers full-waveform LiDAR data and provides a unique opportunity to improve AGBD estimates. However, global GEDI estimates (GEDI-L4A) have some constraints, such as lack of full coverage of AGBD maps and scarcity of training data for some biomes, particularly in arid areas. Moreover, uncertainties remain about the type of GEDI footprint that best penetrates the canopy and yields accurate vegetation structure metrics. This study estimates forest biomass of arid and semi-arid zones in two stages. First, a model was fitted to predict AGBD by relating GEDI and field data from different vegetation types, including xeric shrubland. Second, different footprint qualities were evaluated, and their AGBD was related to images from Sentinel-1 and -2 satellites to produce a wall-to-wall map of AGBD. The model fitted with field data and GEDI showed adequate performance (%RMSE = 45.0) and produced more accurate estimates than GEDI-L4A (%RMSE = 84.6). The wall-to-wall mapping model also performed well (%RMSE = 37.0) and substantially reduced the underestimation of AGBD for arid zones. This study highlights the advantages of fitting new models for AGBD estimation from GEDI and local field data, whose combination with satellite imagery yielded accurate wall-to-wall AGBD estimates with a 10 m resolution. The results of this study contribute new perspectives to improve the accuracy of AGBD estimates in arid zones, whose role in climate change mitigation may be markedly underestimated.http://www.sciencedirect.com/science/article/pii/S2666017225000100AGBDFull-waveform LiDARRandom forestXeric shrublandTropical deciduous forestBroad-leaved forest
spellingShingle Luis A. Hernández-Martínez
Juan Manuel Dupuy-Rada
Alfonso Medel-Narváez
Carlos Portillo-Quintero
José Luis Hernández-Stefanoni
Improving aboveground biomass density mapping of arid and semi-arid vegetation by combining GEDI LiDAR, Sentinel-1/2 imagery and field data
Science of Remote Sensing
AGBD
Full-waveform LiDAR
Random forest
Xeric shrubland
Tropical deciduous forest
Broad-leaved forest
title Improving aboveground biomass density mapping of arid and semi-arid vegetation by combining GEDI LiDAR, Sentinel-1/2 imagery and field data
title_full Improving aboveground biomass density mapping of arid and semi-arid vegetation by combining GEDI LiDAR, Sentinel-1/2 imagery and field data
title_fullStr Improving aboveground biomass density mapping of arid and semi-arid vegetation by combining GEDI LiDAR, Sentinel-1/2 imagery and field data
title_full_unstemmed Improving aboveground biomass density mapping of arid and semi-arid vegetation by combining GEDI LiDAR, Sentinel-1/2 imagery and field data
title_short Improving aboveground biomass density mapping of arid and semi-arid vegetation by combining GEDI LiDAR, Sentinel-1/2 imagery and field data
title_sort improving aboveground biomass density mapping of arid and semi arid vegetation by combining gedi lidar sentinel 1 2 imagery and field data
topic AGBD
Full-waveform LiDAR
Random forest
Xeric shrubland
Tropical deciduous forest
Broad-leaved forest
url http://www.sciencedirect.com/science/article/pii/S2666017225000100
work_keys_str_mv AT luisahernandezmartinez improvingabovegroundbiomassdensitymappingofaridandsemiaridvegetationbycombininggedilidarsentinel12imageryandfielddata
AT juanmanueldupuyrada improvingabovegroundbiomassdensitymappingofaridandsemiaridvegetationbycombininggedilidarsentinel12imageryandfielddata
AT alfonsomedelnarvaez improvingabovegroundbiomassdensitymappingofaridandsemiaridvegetationbycombininggedilidarsentinel12imageryandfielddata
AT carlosportilloquintero improvingabovegroundbiomassdensitymappingofaridandsemiaridvegetationbycombininggedilidarsentinel12imageryandfielddata
AT joseluishernandezstefanoni improvingabovegroundbiomassdensitymappingofaridandsemiaridvegetationbycombininggedilidarsentinel12imageryandfielddata