Evaluating the Effects of Chemical Composition on Induction Heating Ability of Fe2O3-CaO-SiO2 Glass Ceramics

In order to investigate the relationship between induction heating ability of Fe2O3-CaO-SiO2 glass ceramics and chemical composition, a series of glass ceramic samples with different chemical compositions were prepared by the sol-gel method. The structural, textural, and magnetic properties of the s...

Full description

Saved in:
Bibliographic Details
Main Authors: Y. Y. Wang, B. Li, Y. L. Yu, P. S. Tang
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Materials Science and Engineering
Online Access:http://dx.doi.org/10.1155/2016/2539468
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to investigate the relationship between induction heating ability of Fe2O3-CaO-SiO2 glass ceramics and chemical composition, a series of glass ceramic samples with different chemical compositions were prepared by the sol-gel method. The structural, textural, and magnetic properties of the samples were analyzed and correlated with the Fe2O3 content. This is the first time work of its kind that evaluates the relationships between induction heating ability and chemical composition of Fe2O3-CaO-SiO2 glass ceramics. The results showed that induction heating ability of Fe2O3-CaO-SiO2 glass ceramics increased gradually with increasing magnetite content. Also, the induction heating ability became considerably better when a small amount of phosphorus was introduced. This study thus reveals a methodology to control the induction heating ability of Fe2O3-CaO-SiO2 glass ceramics through modifying the chemical composition.
ISSN:1687-8434
1687-8442