Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays
Arrays of gate-defined semiconductor quantum dots are among the leading candidates for building scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require exquisite and targeted control over key Hamiltonian parameters that define the electrostatic...
Saved in:
| Main Authors: | , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
American Physical Society
2025-04-01
|
| Series: | Physical Review X |
| Online Access: | http://doi.org/10.1103/PhysRevX.15.021034 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849315923930906624 |
|---|---|
| author | Anantha S. Rao Donovan Buterakos Barnaby van Straaten Valentin John Cécile X. Yu Stefan D. Oosterhout Lucas Stehouwer Giordano Scappucci Menno Veldhorst Francesco Borsoi Justyna P. Zwolak |
| author_facet | Anantha S. Rao Donovan Buterakos Barnaby van Straaten Valentin John Cécile X. Yu Stefan D. Oosterhout Lucas Stehouwer Giordano Scappucci Menno Veldhorst Francesco Borsoi Justyna P. Zwolak |
| author_sort | Anantha S. Rao |
| collection | DOAJ |
| description | Arrays of gate-defined semiconductor quantum dots are among the leading candidates for building scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require exquisite and targeted control over key Hamiltonian parameters that define the electrostatic environment. However, due to the tight gate pitch, capacitive crosstalk between gates hinders independent tuning of chemical potentials and interdot couplings. While virtual gates offer a practical solution, determining all the required cross-capacitance matrices accurately and efficiently in large quantum dot registers is an open challenge. Here, we establish a modular automated virtualization system (MAViS)—a general and modular framework for autonomously constructing a complete stack of multilayer virtual gates in real time. Our method employs machine learning techniques to rapidly extract features from two-dimensional charge stability diagrams. We then utilize computer vision and regression models to self-consistently determine all relative capacitive couplings necessary for virtualizing plunger and barrier gates in both low- and high-tunnel-coupling regimes. Using MAViS, we successfully demonstrate accurate virtualization of a dense two-dimensional array comprising ten quantum dots defined in a high-quality Ge/SiGe heterostructure. Our work offers an elegant and practical solution for the efficient control of large-scale semiconductor quantum dot systems. |
| format | Article |
| id | doaj-art-cd441dea4aa84b419bf5e1dbdfa4ff71 |
| institution | Kabale University |
| issn | 2160-3308 |
| language | English |
| publishDate | 2025-04-01 |
| publisher | American Physical Society |
| record_format | Article |
| series | Physical Review X |
| spelling | doaj-art-cd441dea4aa84b419bf5e1dbdfa4ff712025-08-20T03:51:59ZengAmerican Physical SocietyPhysical Review X2160-33082025-04-0115202103410.1103/PhysRevX.15.021034Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot ArraysAnantha S. RaoDonovan ButerakosBarnaby van StraatenValentin JohnCécile X. YuStefan D. OosterhoutLucas StehouwerGiordano ScappucciMenno VeldhorstFrancesco BorsoiJustyna P. ZwolakArrays of gate-defined semiconductor quantum dots are among the leading candidates for building scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require exquisite and targeted control over key Hamiltonian parameters that define the electrostatic environment. However, due to the tight gate pitch, capacitive crosstalk between gates hinders independent tuning of chemical potentials and interdot couplings. While virtual gates offer a practical solution, determining all the required cross-capacitance matrices accurately and efficiently in large quantum dot registers is an open challenge. Here, we establish a modular automated virtualization system (MAViS)—a general and modular framework for autonomously constructing a complete stack of multilayer virtual gates in real time. Our method employs machine learning techniques to rapidly extract features from two-dimensional charge stability diagrams. We then utilize computer vision and regression models to self-consistently determine all relative capacitive couplings necessary for virtualizing plunger and barrier gates in both low- and high-tunnel-coupling regimes. Using MAViS, we successfully demonstrate accurate virtualization of a dense two-dimensional array comprising ten quantum dots defined in a high-quality Ge/SiGe heterostructure. Our work offers an elegant and practical solution for the efficient control of large-scale semiconductor quantum dot systems.http://doi.org/10.1103/PhysRevX.15.021034 |
| spellingShingle | Anantha S. Rao Donovan Buterakos Barnaby van Straaten Valentin John Cécile X. Yu Stefan D. Oosterhout Lucas Stehouwer Giordano Scappucci Menno Veldhorst Francesco Borsoi Justyna P. Zwolak Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays Physical Review X |
| title | Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays |
| title_full | Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays |
| title_fullStr | Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays |
| title_full_unstemmed | Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays |
| title_short | Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays |
| title_sort | modular autonomous virtualization system for two dimensional semiconductor quantum dot arrays |
| url | http://doi.org/10.1103/PhysRevX.15.021034 |
| work_keys_str_mv | AT ananthasrao modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays AT donovanbuterakos modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays AT barnabyvanstraaten modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays AT valentinjohn modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays AT cecilexyu modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays AT stefandoosterhout modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays AT lucasstehouwer modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays AT giordanoscappucci modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays AT mennoveldhorst modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays AT francescoborsoi modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays AT justynapzwolak modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays |