Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays

Arrays of gate-defined semiconductor quantum dots are among the leading candidates for building scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require exquisite and targeted control over key Hamiltonian parameters that define the electrostatic...

Full description

Saved in:
Bibliographic Details
Main Authors: Anantha S. Rao, Donovan Buterakos, Barnaby van Straaten, Valentin John, Cécile X. Yu, Stefan D. Oosterhout, Lucas Stehouwer, Giordano Scappucci, Menno Veldhorst, Francesco Borsoi, Justyna P. Zwolak
Format: Article
Language:English
Published: American Physical Society 2025-04-01
Series:Physical Review X
Online Access:http://doi.org/10.1103/PhysRevX.15.021034
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849315923930906624
author Anantha S. Rao
Donovan Buterakos
Barnaby van Straaten
Valentin John
Cécile X. Yu
Stefan D. Oosterhout
Lucas Stehouwer
Giordano Scappucci
Menno Veldhorst
Francesco Borsoi
Justyna P. Zwolak
author_facet Anantha S. Rao
Donovan Buterakos
Barnaby van Straaten
Valentin John
Cécile X. Yu
Stefan D. Oosterhout
Lucas Stehouwer
Giordano Scappucci
Menno Veldhorst
Francesco Borsoi
Justyna P. Zwolak
author_sort Anantha S. Rao
collection DOAJ
description Arrays of gate-defined semiconductor quantum dots are among the leading candidates for building scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require exquisite and targeted control over key Hamiltonian parameters that define the electrostatic environment. However, due to the tight gate pitch, capacitive crosstalk between gates hinders independent tuning of chemical potentials and interdot couplings. While virtual gates offer a practical solution, determining all the required cross-capacitance matrices accurately and efficiently in large quantum dot registers is an open challenge. Here, we establish a modular automated virtualization system (MAViS)—a general and modular framework for autonomously constructing a complete stack of multilayer virtual gates in real time. Our method employs machine learning techniques to rapidly extract features from two-dimensional charge stability diagrams. We then utilize computer vision and regression models to self-consistently determine all relative capacitive couplings necessary for virtualizing plunger and barrier gates in both low- and high-tunnel-coupling regimes. Using MAViS, we successfully demonstrate accurate virtualization of a dense two-dimensional array comprising ten quantum dots defined in a high-quality Ge/SiGe heterostructure. Our work offers an elegant and practical solution for the efficient control of large-scale semiconductor quantum dot systems.
format Article
id doaj-art-cd441dea4aa84b419bf5e1dbdfa4ff71
institution Kabale University
issn 2160-3308
language English
publishDate 2025-04-01
publisher American Physical Society
record_format Article
series Physical Review X
spelling doaj-art-cd441dea4aa84b419bf5e1dbdfa4ff712025-08-20T03:51:59ZengAmerican Physical SocietyPhysical Review X2160-33082025-04-0115202103410.1103/PhysRevX.15.021034Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot ArraysAnantha S. RaoDonovan ButerakosBarnaby van StraatenValentin JohnCécile X. YuStefan D. OosterhoutLucas StehouwerGiordano ScappucciMenno VeldhorstFrancesco BorsoiJustyna P. ZwolakArrays of gate-defined semiconductor quantum dots are among the leading candidates for building scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require exquisite and targeted control over key Hamiltonian parameters that define the electrostatic environment. However, due to the tight gate pitch, capacitive crosstalk between gates hinders independent tuning of chemical potentials and interdot couplings. While virtual gates offer a practical solution, determining all the required cross-capacitance matrices accurately and efficiently in large quantum dot registers is an open challenge. Here, we establish a modular automated virtualization system (MAViS)—a general and modular framework for autonomously constructing a complete stack of multilayer virtual gates in real time. Our method employs machine learning techniques to rapidly extract features from two-dimensional charge stability diagrams. We then utilize computer vision and regression models to self-consistently determine all relative capacitive couplings necessary for virtualizing plunger and barrier gates in both low- and high-tunnel-coupling regimes. Using MAViS, we successfully demonstrate accurate virtualization of a dense two-dimensional array comprising ten quantum dots defined in a high-quality Ge/SiGe heterostructure. Our work offers an elegant and practical solution for the efficient control of large-scale semiconductor quantum dot systems.http://doi.org/10.1103/PhysRevX.15.021034
spellingShingle Anantha S. Rao
Donovan Buterakos
Barnaby van Straaten
Valentin John
Cécile X. Yu
Stefan D. Oosterhout
Lucas Stehouwer
Giordano Scappucci
Menno Veldhorst
Francesco Borsoi
Justyna P. Zwolak
Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays
Physical Review X
title Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays
title_full Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays
title_fullStr Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays
title_full_unstemmed Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays
title_short Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays
title_sort modular autonomous virtualization system for two dimensional semiconductor quantum dot arrays
url http://doi.org/10.1103/PhysRevX.15.021034
work_keys_str_mv AT ananthasrao modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays
AT donovanbuterakos modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays
AT barnabyvanstraaten modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays
AT valentinjohn modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays
AT cecilexyu modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays
AT stefandoosterhout modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays
AT lucasstehouwer modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays
AT giordanoscappucci modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays
AT mennoveldhorst modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays
AT francescoborsoi modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays
AT justynapzwolak modularautonomousvirtualizationsystemfortwodimensionalsemiconductorquantumdotarrays