Ensemble Learning for Spatial Modeling of Icing Fields from Multi-Source Remote Sensing Data
Accurate real-time icing grid fields are critical for preventing ice-related disasters during winter and protecting property. These fields are essential for both mapping ice distribution and predicting icing using physical models combined with numerical weather prediction systems. However, developin...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/13/2155 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Accurate real-time icing grid fields are critical for preventing ice-related disasters during winter and protecting property. These fields are essential for both mapping ice distribution and predicting icing using physical models combined with numerical weather prediction systems. However, developing precise real-time icing grids is challenging due to the uneven distribution of monitoring stations, data confidentiality restrictions, and the limitations of existing interpolation methods. In this study, we propose a new approach for constructing real-time icing grid fields using 1339 online terminal monitoring datasets provided by the China Southern Power Grid Research Institute Co., Ltd. (CSPGRI) during the winter of 2023. Our method integrates static geographic information, dynamic meteorological factors, and ice_kriging values derived from parameter-optimized Empirical Bayesian Kriging Interpolation (EBKI) to create a spatiotemporally matched, multi-source fused icing thickness grid dataset. We applied five machine learning algorithms—Random Forest, XGBoost, LightGBM, Stacking, and Convolutional Neural Network Transformers (CNNT)—and evaluated their performance using six metrics: R, RMSE, CSI, MAR, FAR, and fbias, on both validation and testing sets. The stacking model performed best, achieving an R-value of 0.634 (0.893), RMSE of 3.424 mm (2.834 mm), CSI of 0.514 (0.774), MAR of 0.309 (0.091), FAR of 0.332 (0.161), and fbias of 1.034 (1.084), respectively, when comparing predicted icing values with actual measurements on pylons. Additionally, we employed the SHAP model to provide a physical interpretation of the stacking model, confirming the independence of selected features. Meteorological factors such as relative humidity (RH), 10 m wind speed (WS<sub>10</sub>), 2 m temperature (T<sub>2</sub>), and precipitation (PRE) demonstrated a range of positive and negative contributions consistent with the observed growth of icing. Thus, our multi-source remote-sensing data-fusion approach, combined with the stacking model, offers a highly accurate and interpretable solution for generating real-time icing grid fields. |
|---|---|
| ISSN: | 2072-4292 |