Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function

The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with r...

Full description

Saved in:
Bibliographic Details
Main Author: N. Nematollahi
Format: Article
Language:English
Published: University of Tehran 2012-03-01
Series:Journal of Sciences, Islamic Republic of Iran
Subjects:
Online Access:https://jsciences.ut.ac.ir/article_24572_27535046c03a4ad4bdb9b3ed20f18ee1.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849387338816290816
author N. Nematollahi
author_facet N. Nematollahi
author_sort N. Nematollahi
collection DOAJ
description The problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function. For some of the distributions in this class, we give numerical values of the smallest values of for which the corresponding Bayes estimator of is minimax.
format Article
id doaj-art-ccdf685bfe6b4ffcadc5b59b44861a3b
institution Kabale University
issn 1016-1104
2345-6914
language English
publishDate 2012-03-01
publisher University of Tehran
record_format Article
series Journal of Sciences, Islamic Republic of Iran
spelling doaj-art-ccdf685bfe6b4ffcadc5b59b44861a3b2025-08-20T03:53:51ZengUniversity of TehranJournal of Sciences, Islamic Republic of Iran1016-11042345-69142012-03-01231778424572Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss FunctionN. Nematollahi0Allameh Tabataba'i UniversityThe problem of estimating the parameter ?, when it is restricted to an interval of the form , in a class of discrete distributions, including Binomial Negative Binomial discrete Weibull and etc., is considered. We give necessary and sufficient conditions for which the Bayes estimator of with respect to a two points boundary supported prior is minimax under squared log error loss function. For some of the distributions in this class, we give numerical values of the smallest values of for which the corresponding Bayes estimator of is minimax.https://jsciences.ut.ac.ir/article_24572_27535046c03a4ad4bdb9b3ed20f18ee1.pdfbayes estimatorsquared log error loss functionbounded parameter spacediscrete distributionminimax estimation
spellingShingle N. Nematollahi
Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
Journal of Sciences, Islamic Republic of Iran
bayes estimator
squared log error loss function
bounded parameter space
discrete distribution
minimax estimation
title Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
title_full Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
title_fullStr Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
title_full_unstemmed Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
title_short Minimax Estimator of a Lower Bounded Parameter of a Discrete Distribution under a Squared Log Error Loss Function
title_sort minimax estimator of a lower bounded parameter of a discrete distribution under a squared log error loss function
topic bayes estimator
squared log error loss function
bounded parameter space
discrete distribution
minimax estimation
url https://jsciences.ut.ac.ir/article_24572_27535046c03a4ad4bdb9b3ed20f18ee1.pdf
work_keys_str_mv AT nnematollahi minimaxestimatorofalowerboundedparameterofadiscretedistributionunderasquaredlogerrorlossfunction