A Method for Enhancing the Traffic Situation Awareness of Vessel Traffic Service Operators by Identifying High Risk Ships in Complex Navigation Conditions

As ship traffic volumes increase and navigable waters become more complex, vessel traffic service operators (VTSOs) face growing challenges to effectively monitor marine traffic. To address the heavy reliance on human expertise in current ship supervision, we propose a method for quickly identifying...

Full description

Saved in:
Bibliographic Details
Main Authors: Lei Zhang, Jiahao Ge, Floris Goerlandt, Lei Du, Tuowei Chen, Tingting Gu, Langxiong Gan, Xiaobin Li
Format: Article
Language:English
Published: MDPI AG 2025-02-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/2/379
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As ship traffic volumes increase and navigable waters become more complex, vessel traffic service operators (VTSOs) face growing challenges to effectively monitor marine traffic. To address the heavy reliance on human expertise in current ship supervision, we propose a method for quickly identifying high risk ships to enhance the situational awareness of VTSOs in complex waters. First, the K-means clustering algorithm is improved using the Whale Optimization Algorithm (WOA) to adaptively cluster ships within a waterway, segmenting the traffic in the area into multiple ship clusters. Second, a ship cluster collision risk assessment model is developed to quantify the degree of collision risk for each ship cluster. Finally, a weighted directed complex network is constructed to identify high risk ships within each ship cluster. Experimental simulations show that the proposed WOA–K-means clustering algorithm outperforms other adaptive clustering algorithms in terms of computation speed and accuracy. The developed ship cluster collision risk assessment model can identify high risk ship clusters that require VTSO attention, and the weighted directed complex network model accurately identifies high risk ships. This approach can assist VTSOs in executing a comprehensive and targeted monitoring process encompassing macro, meso, and micro aspects, thus boosting the efficacy of ship oversight, and mitigating traffic hazards.
ISSN:2077-1312