Note on Colon-Multiplication Domains

Let R be an integral domain with quotient field L. Call a nonzero (fractional) ideal A of R a colon-multiplication ideal any ideal A, such that B(A:B)=A for every nonzero (fractional) ideal B of R. In this note, we characterize integral domains for which every maximal ideal (resp., every nonzero i...

Full description

Saved in:
Bibliographic Details
Main Author: A. Mimouni
Format: Article
Language:English
Published: Wiley 2010-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2010/231326
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850172929243873280
author A. Mimouni
author_facet A. Mimouni
author_sort A. Mimouni
collection DOAJ
description Let R be an integral domain with quotient field L. Call a nonzero (fractional) ideal A of R a colon-multiplication ideal any ideal A, such that B(A:B)=A for every nonzero (fractional) ideal B of R. In this note, we characterize integral domains for which every maximal ideal (resp., every nonzero ideal) is a colon-multiplication ideal. It turns that this notion unifies Dedekind and MTP domains.
format Article
id doaj-art-ccc844340d5c4b538cd31be4f30ef1a5
institution OA Journals
issn 0161-1712
1687-0425
language English
publishDate 2010-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-ccc844340d5c4b538cd31be4f30ef1a52025-08-20T02:19:57ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04252010-01-01201010.1155/2010/231326231326Note on Colon-Multiplication DomainsA. Mimouni0Department of Mathematics and Statistics, King Fahd University of Petroleum & Minerals, P.O. Box 278, Dhahran 31261, Saudi ArabiaLet R be an integral domain with quotient field L. Call a nonzero (fractional) ideal A of R a colon-multiplication ideal any ideal A, such that B(A:B)=A for every nonzero (fractional) ideal B of R. In this note, we characterize integral domains for which every maximal ideal (resp., every nonzero ideal) is a colon-multiplication ideal. It turns that this notion unifies Dedekind and MTP domains.http://dx.doi.org/10.1155/2010/231326
spellingShingle A. Mimouni
Note on Colon-Multiplication Domains
International Journal of Mathematics and Mathematical Sciences
title Note on Colon-Multiplication Domains
title_full Note on Colon-Multiplication Domains
title_fullStr Note on Colon-Multiplication Domains
title_full_unstemmed Note on Colon-Multiplication Domains
title_short Note on Colon-Multiplication Domains
title_sort note on colon multiplication domains
url http://dx.doi.org/10.1155/2010/231326
work_keys_str_mv AT amimouni noteoncolonmultiplicationdomains