The QCML dataset, Quantum chemistry reference data from 33.5M DFT and 14.7B semi-empirical calculations

Abstract Machine learning (ML) methods enable prediction of the properties of chemical structures without computationally expensive ab initio calculations. The quality of such predictions depends on the reference data that was used to train the model. In this work, we introduce the QCML dataset: A c...

Full description

Saved in:
Bibliographic Details
Main Authors: Stefan Ganscha, Oliver T. Unke, Daniel Ahlin, Hartmut Maennel, Sergii Kashubin, Klaus-Robert Müller
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:Scientific Data
Online Access:https://doi.org/10.1038/s41597-025-04720-7
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850252093674225664
author Stefan Ganscha
Oliver T. Unke
Daniel Ahlin
Hartmut Maennel
Sergii Kashubin
Klaus-Robert Müller
author_facet Stefan Ganscha
Oliver T. Unke
Daniel Ahlin
Hartmut Maennel
Sergii Kashubin
Klaus-Robert Müller
author_sort Stefan Ganscha
collection DOAJ
description Abstract Machine learning (ML) methods enable prediction of the properties of chemical structures without computationally expensive ab initio calculations. The quality of such predictions depends on the reference data that was used to train the model. In this work, we introduce the QCML dataset: A comprehensive dataset for training ML models for quantum chemistry. The QCML dataset systematically covers chemical space with small molecules consisting of up to 8 heavy atoms and includes elements from a large fraction of the periodic table, as well as different electronic states. Starting from chemical graphs, conformer search and normal mode sampling are used to generate both equilibrium and off-equilibrium 3D structures, for which various properties are calculated with semi-empirical methods (14.7 billion entries) and density functional theory (33.5 million entries). The covered properties include energies, forces, multipole moments, and other quantities, e.g., Kohn-Sham matrices. We provide a first demonstration of the utility of our dataset by training ML-based force fields on the data and applying them to run molecular dynamics simulations.
format Article
id doaj-art-cc3d261a9ee04fe0b42b1333accde9c0
institution OA Journals
issn 2052-4463
language English
publishDate 2025-03-01
publisher Nature Portfolio
record_format Article
series Scientific Data
spelling doaj-art-cc3d261a9ee04fe0b42b1333accde9c02025-08-20T01:57:44ZengNature PortfolioScientific Data2052-44632025-03-0112111510.1038/s41597-025-04720-7The QCML dataset, Quantum chemistry reference data from 33.5M DFT and 14.7B semi-empirical calculationsStefan Ganscha0Oliver T. Unke1Daniel Ahlin2Hartmut Maennel3Sergii Kashubin4Klaus-Robert Müller5Google DeepMindGoogle DeepMindGoogle DeepMindGoogle DeepMindGoogle DeepMindGoogle DeepMindAbstract Machine learning (ML) methods enable prediction of the properties of chemical structures without computationally expensive ab initio calculations. The quality of such predictions depends on the reference data that was used to train the model. In this work, we introduce the QCML dataset: A comprehensive dataset for training ML models for quantum chemistry. The QCML dataset systematically covers chemical space with small molecules consisting of up to 8 heavy atoms and includes elements from a large fraction of the periodic table, as well as different electronic states. Starting from chemical graphs, conformer search and normal mode sampling are used to generate both equilibrium and off-equilibrium 3D structures, for which various properties are calculated with semi-empirical methods (14.7 billion entries) and density functional theory (33.5 million entries). The covered properties include energies, forces, multipole moments, and other quantities, e.g., Kohn-Sham matrices. We provide a first demonstration of the utility of our dataset by training ML-based force fields on the data and applying them to run molecular dynamics simulations.https://doi.org/10.1038/s41597-025-04720-7
spellingShingle Stefan Ganscha
Oliver T. Unke
Daniel Ahlin
Hartmut Maennel
Sergii Kashubin
Klaus-Robert Müller
The QCML dataset, Quantum chemistry reference data from 33.5M DFT and 14.7B semi-empirical calculations
Scientific Data
title The QCML dataset, Quantum chemistry reference data from 33.5M DFT and 14.7B semi-empirical calculations
title_full The QCML dataset, Quantum chemistry reference data from 33.5M DFT and 14.7B semi-empirical calculations
title_fullStr The QCML dataset, Quantum chemistry reference data from 33.5M DFT and 14.7B semi-empirical calculations
title_full_unstemmed The QCML dataset, Quantum chemistry reference data from 33.5M DFT and 14.7B semi-empirical calculations
title_short The QCML dataset, Quantum chemistry reference data from 33.5M DFT and 14.7B semi-empirical calculations
title_sort qcml dataset quantum chemistry reference data from 33 5m dft and 14 7b semi empirical calculations
url https://doi.org/10.1038/s41597-025-04720-7
work_keys_str_mv AT stefanganscha theqcmldatasetquantumchemistryreferencedatafrom335mdftand147bsemiempiricalcalculations
AT olivertunke theqcmldatasetquantumchemistryreferencedatafrom335mdftand147bsemiempiricalcalculations
AT danielahlin theqcmldatasetquantumchemistryreferencedatafrom335mdftand147bsemiempiricalcalculations
AT hartmutmaennel theqcmldatasetquantumchemistryreferencedatafrom335mdftand147bsemiempiricalcalculations
AT sergiikashubin theqcmldatasetquantumchemistryreferencedatafrom335mdftand147bsemiempiricalcalculations
AT klausrobertmuller theqcmldatasetquantumchemistryreferencedatafrom335mdftand147bsemiempiricalcalculations
AT stefanganscha qcmldatasetquantumchemistryreferencedatafrom335mdftand147bsemiempiricalcalculations
AT olivertunke qcmldatasetquantumchemistryreferencedatafrom335mdftand147bsemiempiricalcalculations
AT danielahlin qcmldatasetquantumchemistryreferencedatafrom335mdftand147bsemiempiricalcalculations
AT hartmutmaennel qcmldatasetquantumchemistryreferencedatafrom335mdftand147bsemiempiricalcalculations
AT sergiikashubin qcmldatasetquantumchemistryreferencedatafrom335mdftand147bsemiempiricalcalculations
AT klausrobertmuller qcmldatasetquantumchemistryreferencedatafrom335mdftand147bsemiempiricalcalculations