Floquet-Bloch valleytronics
Abstract Upon time-periodic driving of electrons using electromagnetic fields, the emergence of Floquet-Bloch states enables the creation and control of exotic quantum phases. In transition metal dichalcogenides, broken inversion symmetry within each monolayer results in Berry curvature at the K and...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-07-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-61076-7 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1849769226457317376 |
|---|---|
| author | Sotirios Fragkos Baptiste Fabre Olena Tkach Stéphane Petit Dominique Descamps Gerd Schönhense Yann Mairesse Michael Schüler Samuel Beaulieu |
| author_facet | Sotirios Fragkos Baptiste Fabre Olena Tkach Stéphane Petit Dominique Descamps Gerd Schönhense Yann Mairesse Michael Schüler Samuel Beaulieu |
| author_sort | Sotirios Fragkos |
| collection | DOAJ |
| description | Abstract Upon time-periodic driving of electrons using electromagnetic fields, the emergence of Floquet-Bloch states enables the creation and control of exotic quantum phases. In transition metal dichalcogenides, broken inversion symmetry within each monolayer results in Berry curvature at the K and K′ valley extrema, giving rise to chiroptical selection rules that are fundamental to valleytronics. Here, we bridge the gap between these two concepts and introduce Floquet-Bloch valleytronics. Using time- and polarization-resolved extreme ultraviolet momentum microscopy combined with state-of-the-art ab initio theory, we demonstrate the formation of valley-polarized Floquet-Bloch states in 2H-WSe2 upon below-bandgap driving with circularly polarized light pulses. We investigate quantum-path interference between Floquet-Bloch and Volkov states, revealing its dependence on the valley pseudospin and light polarization. Extreme ultraviolet photoemission circular dichroism in these non-equilibrium settings reveals the potential for controlling the orbital character of Floquet-engineered states. These findings link Floquet engineering and quantum-geometric light-matter coupling in two-dimensional materials. |
| format | Article |
| id | doaj-art-cc2940089fe84d4c9d7a6dcc3d1e7bfc |
| institution | DOAJ |
| issn | 2041-1723 |
| language | English |
| publishDate | 2025-07-01 |
| publisher | Nature Portfolio |
| record_format | Article |
| series | Nature Communications |
| spelling | doaj-art-cc2940089fe84d4c9d7a6dcc3d1e7bfc2025-08-20T03:03:29ZengNature PortfolioNature Communications2041-17232025-07-0116111010.1038/s41467-025-61076-7Floquet-Bloch valleytronicsSotirios Fragkos0Baptiste Fabre1Olena Tkach2Stéphane Petit3Dominique Descamps4Gerd Schönhense5Yann Mairesse6Michael Schüler7Samuel Beaulieu8Université de Bordeaux - CNRS - CEA, CELIA, UMR5107Université de Bordeaux - CNRS - CEA, CELIA, UMR5107Johannes Gutenberg-Universität, Institut für PhysikUniversité de Bordeaux - CNRS - CEA, CELIA, UMR5107Université de Bordeaux - CNRS - CEA, CELIA, UMR5107Johannes Gutenberg-Universität, Institut für PhysikUniversité de Bordeaux - CNRS - CEA, CELIA, UMR5107PSI Center for Scientific Computing, Theory and DataUniversité de Bordeaux - CNRS - CEA, CELIA, UMR5107Abstract Upon time-periodic driving of electrons using electromagnetic fields, the emergence of Floquet-Bloch states enables the creation and control of exotic quantum phases. In transition metal dichalcogenides, broken inversion symmetry within each monolayer results in Berry curvature at the K and K′ valley extrema, giving rise to chiroptical selection rules that are fundamental to valleytronics. Here, we bridge the gap between these two concepts and introduce Floquet-Bloch valleytronics. Using time- and polarization-resolved extreme ultraviolet momentum microscopy combined with state-of-the-art ab initio theory, we demonstrate the formation of valley-polarized Floquet-Bloch states in 2H-WSe2 upon below-bandgap driving with circularly polarized light pulses. We investigate quantum-path interference between Floquet-Bloch and Volkov states, revealing its dependence on the valley pseudospin and light polarization. Extreme ultraviolet photoemission circular dichroism in these non-equilibrium settings reveals the potential for controlling the orbital character of Floquet-engineered states. These findings link Floquet engineering and quantum-geometric light-matter coupling in two-dimensional materials.https://doi.org/10.1038/s41467-025-61076-7 |
| spellingShingle | Sotirios Fragkos Baptiste Fabre Olena Tkach Stéphane Petit Dominique Descamps Gerd Schönhense Yann Mairesse Michael Schüler Samuel Beaulieu Floquet-Bloch valleytronics Nature Communications |
| title | Floquet-Bloch valleytronics |
| title_full | Floquet-Bloch valleytronics |
| title_fullStr | Floquet-Bloch valleytronics |
| title_full_unstemmed | Floquet-Bloch valleytronics |
| title_short | Floquet-Bloch valleytronics |
| title_sort | floquet bloch valleytronics |
| url | https://doi.org/10.1038/s41467-025-61076-7 |
| work_keys_str_mv | AT sotiriosfragkos floquetblochvalleytronics AT baptistefabre floquetblochvalleytronics AT olenatkach floquetblochvalleytronics AT stephanepetit floquetblochvalleytronics AT dominiquedescamps floquetblochvalleytronics AT gerdschonhense floquetblochvalleytronics AT yannmairesse floquetblochvalleytronics AT michaelschuler floquetblochvalleytronics AT samuelbeaulieu floquetblochvalleytronics |