All-polymer piezo-ionic-electric electronics
Abstract Piezoelectric electronics possess great potential in flexible sensing and energy harvesting applications. However, they suffer from low electromechanical performance in all-organic piezoelectric systems due to the disordered and weakly-polarized interfaces. Here, we demonstrated an all-poly...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2024-12-01
|
Series: | Nature Communications |
Online Access: | https://doi.org/10.1038/s41467-024-55177-y |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Piezoelectric electronics possess great potential in flexible sensing and energy harvesting applications. However, they suffer from low electromechanical performance in all-organic piezoelectric systems due to the disordered and weakly-polarized interfaces. Here, we demonstrated an all-polymer piezo-ionic-electric electronics with PVDF/Nafion/PVDF (polyvinylidene difluoride) sandwich structure and regularized ion-electron interfaces. The piezoelectric effect and piezoionic effect mutually couple based on such ion-electron interfaces, endowing this electronics with the unique piezo-ionic-electric working mechanism. Further, owing to the massive interfacial accumulation of ion and electron charges, the electronics obtains a remarkable force-electric coupling enhancement. Experiments show that the electronics presents a high d33 of ~80.70 pC N−1, a pressure sensitivity of 51.50 mV kPa−1 and a maximum peak power of 34.66 mW m−2. It is applicable to be a transducer to light LEDs, and a sensor to detect weak physiological signals or mechanical vibration. This work shows the piezo-ionic-electric electronics as a paradigm of highly-optimized all-polymer piezo-generators. |
---|---|
ISSN: | 2041-1723 |