Heterologous Overexpression of Cytochrome P450BM3 from <i>Bacillus megaterium</i> and Its Role in Gossypol Reduction

Gossypol is a polyphenolic toxic compound present in cotton plants. To determine whether the candidate cytochrome P450BM3 enzymes could reduce gossypol in vitro, functional recombinant cytochrome P450BM3 enzymes were successfully expressed in <i>E. coli</i>. Site-directed mutagenesis gen...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenpeng Fan, Jingjing Cui, Tongxiang Xu, Shiheng Xu, Zulibina Ainiwaer, Qiyu Luo, Caidie Wang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Toxins
Subjects:
Online Access:https://www.mdpi.com/2072-6651/17/5/253
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gossypol is a polyphenolic toxic compound present in cotton plants. To determine whether the candidate cytochrome P450BM3 enzymes could reduce gossypol in vitro, functional recombinant cytochrome P450BM3 enzymes were successfully expressed in <i>E. coli</i>. Site-directed mutagenesis generated mutants (R162H, R162K, Q129H, Q129N) to explore structural determinants of catalytic efficiency. Both wild-type P450BM3 and mutants exhibited significant ability to reduce gossypol levels, with R162H and R162K showing 33.4% and 24.2% reduced catalytic efficiency compared with the wild-type enzyme, respectively. Q129H and Q129N mutants maintained comparable catalytic efficiency to the wild type. Metabolomic profiling revealed two distinct reducing pathways catalyzed by wild-type P450BM3 and its mutants (R162H/Q129H), involving decarboxylation, hydroxylation, and C-C bond cleavage. This study demonstrated the feasibility of P450BM3 as a highly efficient biocatalyst for reducing gossypol levels, speculated that Arg162 might be a critical active residue, and hypothesized the potential pathways by which P450BM3 catalyzes the reduction of gossypol content, thereby providing a theoretical foundation for the enzymatic reduction of gossypol.
ISSN:2072-6651