Asymptotics of $\delta$-subharmonic functions of finite order

For $\delta$-subharmonic in $\mathbb{R}^m$, $m\geq2$, function $u=u_1-u_2$ of finite positive order we found the asymptotical representation of the form \[ u(x)=-I(x,u_1)+I(x,u_2) +O\left(V(|x|)\right),\ x\to\infty, \] where $I(x,u_i)=\int\limits_{|a-x|\leq|x|}K(x,a)d\mu_i(a)$, $K(x,a)=\ln\frac{|x|}...

Full description

Saved in:
Bibliographic Details
Main Author: M.V. Zabolotskyi
Format: Article
Language:deu
Published: Ivan Franko National University of Lviv 2020-12-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/116
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For $\delta$-subharmonic in $\mathbb{R}^m$, $m\geq2$, function $u=u_1-u_2$ of finite positive order we found the asymptotical representation of the form \[ u(x)=-I(x,u_1)+I(x,u_2) +O\left(V(|x|)\right),\ x\to\infty, \] where $I(x,u_i)=\int\limits_{|a-x|\leq|x|}K(x,a)d\mu_i(a)$, $K(x,a)=\ln\frac{|x|}{|x-a|}$ for $m=2$, $K(x,a)=|x-a|^{2-m}-|x|^{2-m}$ for $m\geq3,$ $\mu_i$ is a Riesz measure of the subharmonic function $u_i,$ $V(r)=r^{\rho(r)},$ $\rho(r)$ is a proximate order of $u$. The obtained result generalizes one theorem of I.F. Krasichkov for entire functions.
ISSN:1027-4634
2411-0620