Nearly conconcentric Korteweg-de Vries equation and periodic traveling wave solution

The generalized nearly concentric Korteweg-de Vries equation [un+u/(2η)+u2uζ+uζζζ]ζ+uθθ/η2=0 is considered. The author converts the equation into the power Kadomtsev-Petviashvili equation [ut+unux+uxxx]x+uyy=0. Solitary wave solutions and cnoidal wave solutions are obtained. The cnoidal wave soluti...

Full description

Saved in:
Bibliographic Details
Main Author: Yunkai Chen
Format: Article
Language:English
Published: Wiley 1998-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Subjects:
Online Access:http://dx.doi.org/10.1155/S0161171298000246
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849684038387761152
author Yunkai Chen
author_facet Yunkai Chen
author_sort Yunkai Chen
collection DOAJ
description The generalized nearly concentric Korteweg-de Vries equation [un+u/(2η)+u2uζ+uζζζ]ζ+uθθ/η2=0 is considered. The author converts the equation into the power Kadomtsev-Petviashvili equation [ut+unux+uxxx]x+uyy=0. Solitary wave solutions and cnoidal wave solutions are obtained. The cnoidal wave solutions are shown to be representable as infinite sums of solitons by using Fourier series expansions and Poisson's summation formula.
format Article
id doaj-art-cbc252098dca42b5a115ed5e6147a22c
institution DOAJ
issn 0161-1712
1687-0425
language English
publishDate 1998-01-01
publisher Wiley
record_format Article
series International Journal of Mathematics and Mathematical Sciences
spelling doaj-art-cbc252098dca42b5a115ed5e6147a22c2025-08-20T03:23:35ZengWileyInternational Journal of Mathematics and Mathematical Sciences0161-17121687-04251998-01-0121118318710.1155/S0161171298000246Nearly conconcentric Korteweg-de Vries equation and periodic traveling wave solutionYunkai Chen0Department of Mathematics and Computer Science, Fayetteville State University, Fayetteville 28301-4298, North Carolina, USAThe generalized nearly concentric Korteweg-de Vries equation [un+u/(2η)+u2uζ+uζζζ]ζ+uθθ/η2=0 is considered. The author converts the equation into the power Kadomtsev-Petviashvili equation [ut+unux+uxxx]x+uyy=0. Solitary wave solutions and cnoidal wave solutions are obtained. The cnoidal wave solutions are shown to be representable as infinite sums of solitons by using Fourier series expansions and Poisson's summation formula.http://dx.doi.org/10.1155/S0161171298000246Korteweg-de Vries equationKadomtsev-Petviashvili equation solitary wave solutioncnoidal wave solution.
spellingShingle Yunkai Chen
Nearly conconcentric Korteweg-de Vries equation and periodic traveling wave solution
International Journal of Mathematics and Mathematical Sciences
Korteweg-de Vries equation
Kadomtsev-Petviashvili equation
solitary wave solution
cnoidal wave solution.
title Nearly conconcentric Korteweg-de Vries equation and periodic traveling wave solution
title_full Nearly conconcentric Korteweg-de Vries equation and periodic traveling wave solution
title_fullStr Nearly conconcentric Korteweg-de Vries equation and periodic traveling wave solution
title_full_unstemmed Nearly conconcentric Korteweg-de Vries equation and periodic traveling wave solution
title_short Nearly conconcentric Korteweg-de Vries equation and periodic traveling wave solution
title_sort nearly conconcentric korteweg de vries equation and periodic traveling wave solution
topic Korteweg-de Vries equation
Kadomtsev-Petviashvili equation
solitary wave solution
cnoidal wave solution.
url http://dx.doi.org/10.1155/S0161171298000246
work_keys_str_mv AT yunkaichen nearlyconconcentrickortewegdevriesequationandperiodictravelingwavesolution