Process‐Based Atmosphere‐Hydrology‐Malaria Modeling: Performance for Spatio‐Temporal Malaria Transmission Dynamics in Sub‐Saharan Africa

Abstract With the goal of eradication by 2030, Malaria poses a significant health threat, profoundly influenced by meteorological and hydrological conditions. In support of malaria vector control efforts, we present a high‐resolution, coupled physically‐based modeling approach integrating WRF‐Hydro...

Full description

Saved in:
Bibliographic Details
Main Authors: Mame Diarra Bousso Dieng, Adrian M. Tompkins, Joël Arnault, Ali Sié, Benjamin Fersch, Patrick Laux, Maximilian Schwarz, Pascal Zabré, Stephen Munga, Sammy Khagayi, Ibrahima Diouf, Harald Kunstmann
Format: Article
Language:English
Published: Wiley 2024-06-01
Series:Water Resources Research
Subjects:
Online Access:https://doi.org/10.1029/2023WR034975
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849422711871242240
author Mame Diarra Bousso Dieng
Adrian M. Tompkins
Joël Arnault
Ali Sié
Benjamin Fersch
Patrick Laux
Maximilian Schwarz
Pascal Zabré
Stephen Munga
Sammy Khagayi
Ibrahima Diouf
Harald Kunstmann
author_facet Mame Diarra Bousso Dieng
Adrian M. Tompkins
Joël Arnault
Ali Sié
Benjamin Fersch
Patrick Laux
Maximilian Schwarz
Pascal Zabré
Stephen Munga
Sammy Khagayi
Ibrahima Diouf
Harald Kunstmann
author_sort Mame Diarra Bousso Dieng
collection DOAJ
description Abstract With the goal of eradication by 2030, Malaria poses a significant health threat, profoundly influenced by meteorological and hydrological conditions. In support of malaria vector control efforts, we present a high‐resolution, coupled physically‐based modeling approach integrating WRF‐Hydro and VECTRI. This model approach accurately captures topographic details at the scale of larvae habitats in the Nouna Health and Demographic Surveillance Systems in Sub‐Saharan Africa. Our study demonstrates the proficiency of the high‐resolution hydrometeorological model, WRF‐Hydro, in replicating observed climate characteristics. Comparisons with in‐situ local weather data reveal root mean square errors between 0.6 and 0.87 mm/day for rainfall and correlations ranging from 0.79 to 0.87 for temperatures. Additionally, WRF‐Hydro's surface hydrology reproduces the seasonal and intraseasonal variability of the ponded water fraction with 96% accuracy, validated against Sentinel‐1 data at a 100‐m resolution. The VECTRI model demonstrates sensitivity to surface hydrology representation, particularly when comparing conceptual and detailed physical process models, for variables such as larvae density, mosquito abundance, and EIR. The model's ability to replicate the seasonality of malaria transmission aligns well with available cohort malaria data suggesting its potential for predicting the impacts of climate change on mosquito abundance and transmission intensity in endemic tropical and subtropical zones. This integrated approach opens avenues for enhanced understanding and proactive management of malaria.
format Article
id doaj-art-cbb5c348a85144ea8412d51f689a4d12
institution Kabale University
issn 0043-1397
1944-7973
language English
publishDate 2024-06-01
publisher Wiley
record_format Article
series Water Resources Research
spelling doaj-art-cbb5c348a85144ea8412d51f689a4d122025-08-20T03:30:57ZengWileyWater Resources Research0043-13971944-79732024-06-01606n/an/a10.1029/2023WR034975Process‐Based Atmosphere‐Hydrology‐Malaria Modeling: Performance for Spatio‐Temporal Malaria Transmission Dynamics in Sub‐Saharan AfricaMame Diarra Bousso Dieng0Adrian M. Tompkins1Joël Arnault2Ali Sié3Benjamin Fersch4Patrick Laux5Maximilian Schwarz6Pascal Zabré7Stephen Munga8Sammy Khagayi9Ibrahima Diouf10Harald Kunstmann11Institute of Meteorology and Climate Research (IMK‐IFU) Campus Alpin Karlsruhe Institute of Technology (KIT) Garmisch‐Partenkirchen GermanyInternational Centre for Theoretical Physics (ICTP) Trieste ItalyInstitute of Meteorology and Climate Research (IMK‐IFU) Campus Alpin Karlsruhe Institute of Technology (KIT) Garmisch‐Partenkirchen GermanyCentre de Recherche en Santé de Nouna (CRSN) Nouna Burkina FasoInstitute of Meteorology and Climate Research (IMK‐IFU) Campus Alpin Karlsruhe Institute of Technology (KIT) Garmisch‐Partenkirchen GermanyInstitute of Meteorology and Climate Research (IMK‐IFU) Campus Alpin Karlsruhe Institute of Technology (KIT) Garmisch‐Partenkirchen GermanyRemote Sensing Solutions GmbH (RSS) Munich GermanyCentre de Recherche en Santé de Nouna (CRSN) Nouna Burkina FasoKenya Medical Research Institute (KEMRI) Kisumu KenyaKenya Medical Research Institute (KEMRI) Kisumu KenyaLaboratoire de Physique de l'atmosphère et de l'océan Siméon Fongang (LPAOSF‐ESP) Dakar SenegalInstitute of Meteorology and Climate Research (IMK‐IFU) Campus Alpin Karlsruhe Institute of Technology (KIT) Garmisch‐Partenkirchen GermanyAbstract With the goal of eradication by 2030, Malaria poses a significant health threat, profoundly influenced by meteorological and hydrological conditions. In support of malaria vector control efforts, we present a high‐resolution, coupled physically‐based modeling approach integrating WRF‐Hydro and VECTRI. This model approach accurately captures topographic details at the scale of larvae habitats in the Nouna Health and Demographic Surveillance Systems in Sub‐Saharan Africa. Our study demonstrates the proficiency of the high‐resolution hydrometeorological model, WRF‐Hydro, in replicating observed climate characteristics. Comparisons with in‐situ local weather data reveal root mean square errors between 0.6 and 0.87 mm/day for rainfall and correlations ranging from 0.79 to 0.87 for temperatures. Additionally, WRF‐Hydro's surface hydrology reproduces the seasonal and intraseasonal variability of the ponded water fraction with 96% accuracy, validated against Sentinel‐1 data at a 100‐m resolution. The VECTRI model demonstrates sensitivity to surface hydrology representation, particularly when comparing conceptual and detailed physical process models, for variables such as larvae density, mosquito abundance, and EIR. The model's ability to replicate the seasonality of malaria transmission aligns well with available cohort malaria data suggesting its potential for predicting the impacts of climate change on mosquito abundance and transmission intensity in endemic tropical and subtropical zones. This integrated approach opens avenues for enhanced understanding and proactive management of malaria.https://doi.org/10.1029/2023WR034975hydrometeorologymalaria transmissionpondshigh‐resolutionWRF‐HydroVECTRI
spellingShingle Mame Diarra Bousso Dieng
Adrian M. Tompkins
Joël Arnault
Ali Sié
Benjamin Fersch
Patrick Laux
Maximilian Schwarz
Pascal Zabré
Stephen Munga
Sammy Khagayi
Ibrahima Diouf
Harald Kunstmann
Process‐Based Atmosphere‐Hydrology‐Malaria Modeling: Performance for Spatio‐Temporal Malaria Transmission Dynamics in Sub‐Saharan Africa
Water Resources Research
hydrometeorology
malaria transmission
ponds
high‐resolution
WRF‐Hydro
VECTRI
title Process‐Based Atmosphere‐Hydrology‐Malaria Modeling: Performance for Spatio‐Temporal Malaria Transmission Dynamics in Sub‐Saharan Africa
title_full Process‐Based Atmosphere‐Hydrology‐Malaria Modeling: Performance for Spatio‐Temporal Malaria Transmission Dynamics in Sub‐Saharan Africa
title_fullStr Process‐Based Atmosphere‐Hydrology‐Malaria Modeling: Performance for Spatio‐Temporal Malaria Transmission Dynamics in Sub‐Saharan Africa
title_full_unstemmed Process‐Based Atmosphere‐Hydrology‐Malaria Modeling: Performance for Spatio‐Temporal Malaria Transmission Dynamics in Sub‐Saharan Africa
title_short Process‐Based Atmosphere‐Hydrology‐Malaria Modeling: Performance for Spatio‐Temporal Malaria Transmission Dynamics in Sub‐Saharan Africa
title_sort process based atmosphere hydrology malaria modeling performance for spatio temporal malaria transmission dynamics in sub saharan africa
topic hydrometeorology
malaria transmission
ponds
high‐resolution
WRF‐Hydro
VECTRI
url https://doi.org/10.1029/2023WR034975
work_keys_str_mv AT mamediarraboussodieng processbasedatmospherehydrologymalariamodelingperformanceforspatiotemporalmalariatransmissiondynamicsinsubsaharanafrica
AT adrianmtompkins processbasedatmospherehydrologymalariamodelingperformanceforspatiotemporalmalariatransmissiondynamicsinsubsaharanafrica
AT joelarnault processbasedatmospherehydrologymalariamodelingperformanceforspatiotemporalmalariatransmissiondynamicsinsubsaharanafrica
AT alisie processbasedatmospherehydrologymalariamodelingperformanceforspatiotemporalmalariatransmissiondynamicsinsubsaharanafrica
AT benjaminfersch processbasedatmospherehydrologymalariamodelingperformanceforspatiotemporalmalariatransmissiondynamicsinsubsaharanafrica
AT patricklaux processbasedatmospherehydrologymalariamodelingperformanceforspatiotemporalmalariatransmissiondynamicsinsubsaharanafrica
AT maximilianschwarz processbasedatmospherehydrologymalariamodelingperformanceforspatiotemporalmalariatransmissiondynamicsinsubsaharanafrica
AT pascalzabre processbasedatmospherehydrologymalariamodelingperformanceforspatiotemporalmalariatransmissiondynamicsinsubsaharanafrica
AT stephenmunga processbasedatmospherehydrologymalariamodelingperformanceforspatiotemporalmalariatransmissiondynamicsinsubsaharanafrica
AT sammykhagayi processbasedatmospherehydrologymalariamodelingperformanceforspatiotemporalmalariatransmissiondynamicsinsubsaharanafrica
AT ibrahimadiouf processbasedatmospherehydrologymalariamodelingperformanceforspatiotemporalmalariatransmissiondynamicsinsubsaharanafrica
AT haraldkunstmann processbasedatmospherehydrologymalariamodelingperformanceforspatiotemporalmalariatransmissiondynamicsinsubsaharanafrica