An Interactive Human-in-the-Loop Framework for Skeleton-Based Posture Recognition in Model Education

This paper presents a human-in-the-loop interactive framework for skeleton-based posture recognition, designed to support model training and artistic education. A total of 4870 labeled images are used for training and validation, and 500 images are reserved for testing across five core posture categ...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing Shen, Ling Chen, Xiaotong He, Chuanlin Zuo, Xiangjun Li, Lin Dong
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Biomimetics
Subjects:
Online Access:https://www.mdpi.com/2313-7673/10/7/431
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents a human-in-the-loop interactive framework for skeleton-based posture recognition, designed to support model training and artistic education. A total of 4870 labeled images are used for training and validation, and 500 images are reserved for testing across five core posture categories: standing, sitting, jumping, crouching, and lying. From each image, comprehensive skeletal features are extracted, including joint coordinates, angles, limb lengths, and symmetry metrics. Multiple classification algorithms—traditional (KNN, SVM, Random Forest) and deep learning-based (LSTM, Transformer)—are compared to identify effective combinations of features and models. Experimental results show that deep learning models achieve superior accuracy on complex postures, while traditional models remain competitive with low-dimensional features. Beyond classification, the system integrates posture recognition with a visual recommendation module. Recognized poses are used to retrieve matched examples from a reference library, allowing instructors to browse and select posture suggestions for learners. This semi-automated feedback loop enhances teaching interactivity and efficiency. Among all evaluated methods, the Transformer model achieved the best accuracy of 92.7% on the dataset, demonstrating the effectiveness of our closed-loop framework in supporting pose classification and model training. The proposed framework contributes both algorithmic insights and a novel application design for posture-driven educational support systems.
ISSN:2313-7673