A Branch and Bound Algorithm for Agile Earth Observation Satellite Scheduling

The agile earth observing satellite scheduling (AEOSS) problem consists of scheduling a subset of images among a set of candidates that satisfy imperative constraints and maximize a gain function. In this paper, we consider a new AEOSS model which integrates a time-dependent temporal constraint. To...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaogeng Chu, Yuning Chen, Lining Xing
Format: Article
Language:English
Published: Wiley 2017-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2017/7345941
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The agile earth observing satellite scheduling (AEOSS) problem consists of scheduling a subset of images among a set of candidates that satisfy imperative constraints and maximize a gain function. In this paper, we consider a new AEOSS model which integrates a time-dependent temporal constraint. To solve this problem, we propose a highly efficient branch and bound algorithm whose effective ingredients include a look-ahead construction method (for generating a high quality initial lower bound) and a combined use of three pruning strategies (which help to prune a large portion of the search space). We conducted computational experiments on a set of test data that were generated with information from real-life scenarios. The results showed that the proposed algorithm is efficient enough for engineering application. In particular, it is able to solve instances with 55 targets to optimality within 164 seconds on average. Furthermore, we carried out additional experiments to analyze the contribution of each key algorithm ingredient.
ISSN:1026-0226
1607-887X