Kolmogorov Equation for a Stochastic Reaction–Diffusion Equation with Multiplicative Noise

Reaction–diffusion equations can model complex systems where randomness plays a role, capturing the interaction between diffusion processes and random fluctuations. The Kolmogorov equations associated with these systems play an important role in understanding the long-term behavior, stability, and c...

Full description

Saved in:
Bibliographic Details
Main Authors: Kaiyuqi Guan, Yu Shi
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/10/1561
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849326877439688704
author Kaiyuqi Guan
Yu Shi
author_facet Kaiyuqi Guan
Yu Shi
author_sort Kaiyuqi Guan
collection DOAJ
description Reaction–diffusion equations can model complex systems where randomness plays a role, capturing the interaction between diffusion processes and random fluctuations. The Kolmogorov equations associated with these systems play an important role in understanding the long-term behavior, stability, and control of such complex systems. In this paper, we investigate the existence of a classical solution for the Kolmogorov equation associated with a stochastic reaction–diffusion equation driven by nonlinear multiplicative trace-class noise. We also establish the existence of an invariant measure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> for the corresponding transition semigroup <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mi>t</mi></msub></semantics></math></inline-formula>, where the infinitesimal generator in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>ν</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is identified as the closure of the Kolmogorov operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mn>0</mn></msub></semantics></math></inline-formula>.
format Article
id doaj-art-cba7f3fbfea842fc87828fcd1e256c64
institution Kabale University
issn 2227-7390
language English
publishDate 2025-05-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-cba7f3fbfea842fc87828fcd1e256c642025-08-20T03:48:02ZengMDPI AGMathematics2227-73902025-05-011310156110.3390/math13101561Kolmogorov Equation for a Stochastic Reaction–Diffusion Equation with Multiplicative NoiseKaiyuqi Guan0Yu Shi1School of Mathematics and Statistics, Wuhan University of Technology, Wuhan 430062, ChinaSchool of Mathematics and Statistics, Wuhan University of Technology, Wuhan 430062, ChinaReaction–diffusion equations can model complex systems where randomness plays a role, capturing the interaction between diffusion processes and random fluctuations. The Kolmogorov equations associated with these systems play an important role in understanding the long-term behavior, stability, and control of such complex systems. In this paper, we investigate the existence of a classical solution for the Kolmogorov equation associated with a stochastic reaction–diffusion equation driven by nonlinear multiplicative trace-class noise. We also establish the existence of an invariant measure <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ν</mi></semantics></math></inline-formula> for the corresponding transition semigroup <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mi>t</mi></msub></semantics></math></inline-formula>, where the infinitesimal generator in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mn>2</mn></msup><mrow><mo>(</mo><mi>H</mi><mo>,</mo><mi>ν</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> is identified as the closure of the Kolmogorov operator <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>K</mi><mn>0</mn></msub></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/13/10/1561kolmogorov equationstochastic reaction–diffusion equationmultiplicative noiseinvariant measuretransition semigroup
spellingShingle Kaiyuqi Guan
Yu Shi
Kolmogorov Equation for a Stochastic Reaction–Diffusion Equation with Multiplicative Noise
Mathematics
kolmogorov equation
stochastic reaction–diffusion equation
multiplicative noise
invariant measure
transition semigroup
title Kolmogorov Equation for a Stochastic Reaction–Diffusion Equation with Multiplicative Noise
title_full Kolmogorov Equation for a Stochastic Reaction–Diffusion Equation with Multiplicative Noise
title_fullStr Kolmogorov Equation for a Stochastic Reaction–Diffusion Equation with Multiplicative Noise
title_full_unstemmed Kolmogorov Equation for a Stochastic Reaction–Diffusion Equation with Multiplicative Noise
title_short Kolmogorov Equation for a Stochastic Reaction–Diffusion Equation with Multiplicative Noise
title_sort kolmogorov equation for a stochastic reaction diffusion equation with multiplicative noise
topic kolmogorov equation
stochastic reaction–diffusion equation
multiplicative noise
invariant measure
transition semigroup
url https://www.mdpi.com/2227-7390/13/10/1561
work_keys_str_mv AT kaiyuqiguan kolmogorovequationforastochasticreactiondiffusionequationwithmultiplicativenoise
AT yushi kolmogorovequationforastochasticreactiondiffusionequationwithmultiplicativenoise