Assessing Mitigation Strategies to Reduce Potential Exposures to Indoor Particle Release Events
Abstract Airborne transmission is a major concern for many infectious pathogens, including the novel coronavirus. Ventilation is the principal engineering method used to control airborne health hazards in buildings. Understanding potential air pollution hazards are a particular concern for highly po...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Springer
2022-07-01
|
Series: | Aerosol and Air Quality Research |
Subjects: | |
Online Access: | https://doi.org/10.4209/aaqr.220054 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1825197537246576640 |
---|---|
author | Katie Van Valkinburgh Ali Mohammadi Nafchi Ehsan Mousavi Vincent Blouin Nigel Kaye Andrew R. Metcalf |
author_facet | Katie Van Valkinburgh Ali Mohammadi Nafchi Ehsan Mousavi Vincent Blouin Nigel Kaye Andrew R. Metcalf |
author_sort | Katie Van Valkinburgh |
collection | DOAJ |
description | Abstract Airborne transmission is a major concern for many infectious pathogens, including the novel coronavirus. Ventilation is the principal engineering method used to control airborne health hazards in buildings. Understanding potential air pollution hazards are a particular concern for highly populated indoor environments, such as workplaces and classrooms. This study discusses the results of ventilation testing in a university classroom which contains two fan coil units as the primary HVAC system. A particle nebulizer was used to release aerosol particles into the air, and multiple particulate measuring devices were placed strategically around the room to measure the particle concentration over time. An exponential particle decay rate is determined from the data and converted to a particle concentration half-life, which ranged from over 60 minutes down to under 10 minutes. We then assess how quickly the particles were removed by ventilation systems with varying conditions, including the addition of both high- and low-cost portable mitigation devices into the classroom. Our results indicate that a low-cost unit, made of a simple box fan with a MERV13 filter taped to it, may perform as well at removing particles from a room as a high-cost HEPA filter unit, owing to a tradeoff between filtration efficiency and the number of air changes per hour. As is observed in numerous other studies, the particle concentration half-life in each classroom setup decreases as the mechanical air changes per hour increases from about 1.3 to 9.3. These results are used to evaluate the potential personal exposure risk associated with various classroom ventilation setups. Our results indicate that, when compared to running the fan coil units on low fan speed, operating on a high fan speed reduces potential exposure by 22% and using a portable HEPA filter in the room reduces potential exposure by 66%. |
format | Article |
id | doaj-art-cb7e2cc8787c4ef7822e0fb1f142d1ef |
institution | Kabale University |
issn | 1680-8584 2071-1409 |
language | English |
publishDate | 2022-07-01 |
publisher | Springer |
record_format | Article |
series | Aerosol and Air Quality Research |
spelling | doaj-art-cb7e2cc8787c4ef7822e0fb1f142d1ef2025-02-09T12:18:38ZengSpringerAerosol and Air Quality Research1680-85842071-14092022-07-0122911610.4209/aaqr.220054Assessing Mitigation Strategies to Reduce Potential Exposures to Indoor Particle Release EventsKatie Van Valkinburgh0Ali Mohammadi Nafchi1Ehsan Mousavi2Vincent Blouin3Nigel Kaye4Andrew R. Metcalf5Environmental Engineering and Earth Sciences, Clemson UniversityNieri Family Department of Construction Science and Management, Clemson UniversityNieri Family Department of Construction Science and Management, Clemson UniversityMaterials Science and Engineering, Clemson UniversityGlenn Department of Civil Engineering, Clemson UniversityEnvironmental Engineering and Earth Sciences, Clemson UniversityAbstract Airborne transmission is a major concern for many infectious pathogens, including the novel coronavirus. Ventilation is the principal engineering method used to control airborne health hazards in buildings. Understanding potential air pollution hazards are a particular concern for highly populated indoor environments, such as workplaces and classrooms. This study discusses the results of ventilation testing in a university classroom which contains two fan coil units as the primary HVAC system. A particle nebulizer was used to release aerosol particles into the air, and multiple particulate measuring devices were placed strategically around the room to measure the particle concentration over time. An exponential particle decay rate is determined from the data and converted to a particle concentration half-life, which ranged from over 60 minutes down to under 10 minutes. We then assess how quickly the particles were removed by ventilation systems with varying conditions, including the addition of both high- and low-cost portable mitigation devices into the classroom. Our results indicate that a low-cost unit, made of a simple box fan with a MERV13 filter taped to it, may perform as well at removing particles from a room as a high-cost HEPA filter unit, owing to a tradeoff between filtration efficiency and the number of air changes per hour. As is observed in numerous other studies, the particle concentration half-life in each classroom setup decreases as the mechanical air changes per hour increases from about 1.3 to 9.3. These results are used to evaluate the potential personal exposure risk associated with various classroom ventilation setups. Our results indicate that, when compared to running the fan coil units on low fan speed, operating on a high fan speed reduces potential exposure by 22% and using a portable HEPA filter in the room reduces potential exposure by 66%.https://doi.org/10.4209/aaqr.220054Indoor air pollutionFiltrationVentilationHVAC systems |
spellingShingle | Katie Van Valkinburgh Ali Mohammadi Nafchi Ehsan Mousavi Vincent Blouin Nigel Kaye Andrew R. Metcalf Assessing Mitigation Strategies to Reduce Potential Exposures to Indoor Particle Release Events Aerosol and Air Quality Research Indoor air pollution Filtration Ventilation HVAC systems |
title | Assessing Mitigation Strategies to Reduce Potential Exposures to Indoor Particle Release Events |
title_full | Assessing Mitigation Strategies to Reduce Potential Exposures to Indoor Particle Release Events |
title_fullStr | Assessing Mitigation Strategies to Reduce Potential Exposures to Indoor Particle Release Events |
title_full_unstemmed | Assessing Mitigation Strategies to Reduce Potential Exposures to Indoor Particle Release Events |
title_short | Assessing Mitigation Strategies to Reduce Potential Exposures to Indoor Particle Release Events |
title_sort | assessing mitigation strategies to reduce potential exposures to indoor particle release events |
topic | Indoor air pollution Filtration Ventilation HVAC systems |
url | https://doi.org/10.4209/aaqr.220054 |
work_keys_str_mv | AT katievanvalkinburgh assessingmitigationstrategiestoreducepotentialexposurestoindoorparticlereleaseevents AT alimohammadinafchi assessingmitigationstrategiestoreducepotentialexposurestoindoorparticlereleaseevents AT ehsanmousavi assessingmitigationstrategiestoreducepotentialexposurestoindoorparticlereleaseevents AT vincentblouin assessingmitigationstrategiestoreducepotentialexposurestoindoorparticlereleaseevents AT nigelkaye assessingmitigationstrategiestoreducepotentialexposurestoindoorparticlereleaseevents AT andrewrmetcalf assessingmitigationstrategiestoreducepotentialexposurestoindoorparticlereleaseevents |