Delay Minimization for BAC-NOMA Offloading in UAV Networks
The rapid deployment and enhanced communication capabilities of unmanned aerial vehicles (UAVs) have enabled numerous real-time sensing applications. These scenarios often necessitate task offloading and execution under stringent transmission delay constraints, particularly for time-critical applica...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/25/1/84 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The rapid deployment and enhanced communication capabilities of unmanned aerial vehicles (UAVs) have enabled numerous real-time sensing applications. These scenarios often necessitate task offloading and execution under stringent transmission delay constraints, particularly for time-critical applications such as disaster rescue and environmental monitoring. This paper investigates the improvement of MEC-based task offloading services in energy-constrained UAV networks using backscatter communication (BackCom) with non-orthogonal multiple access (BAC-NOMA). The proposed BAC-NOMA protocol allows uplink UAVs to utilize downlink signals for backscattering tasks instead of transmitting through uplink NOMA. A resource allocation problem is formulated, aimed at minimizing offloading delays for uplink users. By converting the initially non-convex problem into a convex one, an iterative algorithm is developed to solve it. Simulation results demonstrate that the proposed protocol significantly reduces offloading delays relative to existing benchmarks. |
---|---|
ISSN: | 1424-8220 |