Long-Term Variability of Extreme Significant Wave Height in the South China Sea

This paper describes long-term spatiotemporal trends in extreme significant wave height (SWH) in the South China Sea (SCS) based on 30-year wave hindcast. High-resolution reanalysis wind field data sets are employed to drive a spectral wave model WAVEWATCH III™ (WW3). The wave hindcast information i...

Full description

Saved in:
Bibliographic Details
Main Authors: Adekunle Osinowo, Xiaopei Lin, Dongliang Zhao, Zhifeng Wang
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2016/2419353
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes long-term spatiotemporal trends in extreme significant wave height (SWH) in the South China Sea (SCS) based on 30-year wave hindcast. High-resolution reanalysis wind field data sets are employed to drive a spectral wave model WAVEWATCH III™ (WW3). The wave hindcast information is validated using altimeter wave information (Topex/Poseidon). The model performance is satisfactory. Subsequently, the trends in yearly/seasonal/monthly mean extreme SWH are analyzed. Results showed that trends greater than 0.05 m yr−1 are distributed over a large part of the central SCS. During winter, strong positive trends (0.07–0.08 m yr−1) are found in the extreme northeast SCS. Significant trends greater than 0.01 m yr−1 are distributed over most parts of the central SCS in spring. In summer, significant increasing trends (0.01–0.05 m yr−1) are distributed over most regions below latitude 16°N. During autumn, strong positive trends between 0.02 and 0.08 m yr−1 are found in small regions above latitude 12°N. Increasing positive trends are found to be generally significant in the central SCS in December, February, March, and July. Furthermore, temporal trend analysis showed that the extreme SWH exhibits a significant increasing trend of 0.011 m yr−1. The extreme SWH exhibits the strongest increasing trend of 0.03 m yr−1 in winter and showed a decreasing trend of −0.0098 m yr−1 in autumn.
ISSN:1687-9309
1687-9317