Precise placement of thioester bonds into sequence-controlled polymers containing ABAC-type units
Abstract The precise placement of thioester bonds into sequence-controlled polymers remains a grand challenge. Here, we demonstrate the versatile synthesis of sequence-controlled polymers from the step polymerization of cyclic thioanhydrides (A), diacrylates (B), and diols/diamines (C). In addition...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-02-01
|
| Series: | Nature Communications |
| Online Access: | https://doi.org/10.1038/s41467-025-57208-8 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract The precise placement of thioester bonds into sequence-controlled polymers remains a grand challenge. Here, we demonstrate the versatile synthesis of sequence-controlled polymers from the step polymerization of cyclic thioanhydrides (A), diacrylates (B), and diols/diamines (C). In addition to easily accessible diverse monomers, the method is metal-free/catalyst-free, atom-economical, and wide in monomer scope, yielding 107 polymers with >90% yields and weight-average molecular weights of up to 175.4 kDa. The obtained polymers contain ABAC-type repeating units and precisely distributed in-chain thioester and ester (and amide) groups. The chemoselectivity of the polymerization is revealed by density functional theory calculations. The polymer library exhibits considerably tunable performance: glass-transition temperatures of −36–72 °C, melting temperatures of 43–133 °C, degradability, thermoplastics/elastomers, and thioester-based functions. This study furnishes a facile method to precisely incorporate thioester bonds into sequence-controlled polymers. |
|---|---|
| ISSN: | 2041-1723 |