Optimizing Graphene Ring Modulators: A Comparative Study of Straight, Bent, and Racetrack Geometries

Graphene-based micro-ring modulators are promising candidates for next-generation optical interconnects, offering compact footprints, broadband operation, and CMOS compatibility. However, most demonstrations to date have relied on conventional straight bus coupling geometries, which limit design fle...

Full description

Saved in:
Bibliographic Details
Main Authors: Pawan Kumar Dubey, Ashraful Islam Raju, Rasuole Lukose, Christian Wenger, Mindaugas Lukosius
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/15/15/1158
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Graphene-based micro-ring modulators are promising candidates for next-generation optical interconnects, offering compact footprints, broadband operation, and CMOS compatibility. However, most demonstrations to date have relied on conventional straight bus coupling geometries, which limit design flexibility and require extremely small coupling gaps to reach critical coupling. This work presents a comprehensive comparative analysis of straight, bent, and racetrack bus geometries in graphene-on-silicon nitride (Si<sub>3</sub>N<sub>4</sub>) micro-ring modulators operating near 1.31 µm. Based on finite-difference time-domain simulation results, a proposed racetrack-based modulator structure demonstrates that extending the coupling region enables critical coupling at larger gaps—up to 300 nm—while preserving high modulation efficiency. With only 6–12% graphene coverage, this geometry achieves extinction ratios of up to 28 dB and supports electrical bandwidths approaching 90 GHz. Findings from this work highlight a new co-design framework for coupling geometry and graphene coverage, offering a pathway to high-speed and high-modulation-depth graphene photonic modulators suitable for scalable integration in next-generation photonic interconnects devices.
ISSN:2079-4991