Modification of the Bonora Damage Model for shear failure

The Bonora damage model was extended to account for shear-controlled damage. To this purpose, a new definition for the damage dissipation potential in which an explicit dependence on the third invariant of deviatoric stress was proposed. This expression leads to damage rate equation in which two con...

Full description

Saved in:
Bibliographic Details
Main Authors: Nicola Bonora, Gabriel Testa, Andrew Ruggiero, Gianluca Iannitti, Domenico Gentile
Format: Article
Language:English
Published: Gruppo Italiano Frattura 2018-04-01
Series:Fracture and Structural Integrity
Subjects:
Online Access:http://www.gruppofrattura.it/pdf/rivista/numero44/numero_44_art_11.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Bonora damage model was extended to account for shear-controlled damage. To this purpose, a new definition for the damage dissipation potential in which an explicit dependence on the third invariant of deviatoric stress was proposed. This expression leads to damage rate equation in which two contributions, the first for void nucleation and growth damage process the latter for shear fracture, can be recognized. For the JIII controlled damage contribution, only two additional material parameters are necessary of easy experimental identification The extended model formulation was verified predicting the failure locus for AL 2024-T351 alloy. Finally, the failure locus for stress state combinations, where the minimum material ductility is expected, was determined
ISSN:1971-8993