ERCPMP: an endoscopic image and video dataset for colorectal polyps morphology and pathology

Abstract This dataset contains demographic, morphological and pathological data, endoscopic images and videos of 191 patients with colorectal polyps. Morphological data is included based on the latest international gastroenterology classification references such as Paris, Pit and JNET classification...

Full description

Saved in:
Bibliographic Details
Main Authors: Mojgan Forootan, Mohsen Rajabnia, Ahmad R. Mafi, Hamed Azhdari Tehrani, Erfan Ghadirzadeh, Mahziar Setayeshfar, Zahra Ghaffari, Mohammad Tashakoripour, Mohammad Reza Zali, Hamidreza Bolhasani
Format: Article
Language:English
Published: BMC 2024-12-01
Series:BMC Research Notes
Subjects:
Online Access:https://doi.org/10.1186/s13104-024-07062-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This dataset contains demographic, morphological and pathological data, endoscopic images and videos of 191 patients with colorectal polyps. Morphological data is included based on the latest international gastroenterology classification references such as Paris, Pit and JNET classification. Pathological data includes the diagnosis of the polyps including Tubular, Villous, Tubulovillous, Hyperplastic, Serrated, Inflammatory and Adenocarcinoma with Dysplasia Grade & Differentiation. Objectives: Today the most important challenge of developing accurate algorithms for medical prediction, detection, diagnosis, treatment and prognosis is data. ERCPMP is an Endoscopic Image and Video Dataset for Recognition of Colorectal Polyps Morphology and Pathology. This dataset can be used for developing deep learning algorithms for polyps detection, classification, and segmentation. Data description: Images were captured with Olympus colonoscope and are presented in RGB format, JPG type with the resolution of 368 * 256 pixels and 96 dpi. The name of each file (image or video) includes pathological diagnosis, grade and JNet classification of the related polyp.
ISSN:1756-0500