On Semianalytical Study of Fractional-Order Kawahara Partial Differential Equation with the Homotopy Perturbation Method

In this study, we investigate the semianalytic solution of the fifth-order Kawahara partial differential equation (KPDE) with the approach of fractional-order derivative. We use Caputo-type derivative to investigate the said problem by using the homotopy perturbation method (HPM) for the required so...

Full description

Saved in:
Bibliographic Details
Main Authors: Muhammad Sinan, Kamal Shah, Zareen A. Khan, Qasem Al-Mdallal, Fathalla Rihan
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:Journal of Mathematics
Online Access:http://dx.doi.org/10.1155/2021/6045722
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832550591083053056
author Muhammad Sinan
Kamal Shah
Zareen A. Khan
Qasem Al-Mdallal
Fathalla Rihan
author_facet Muhammad Sinan
Kamal Shah
Zareen A. Khan
Qasem Al-Mdallal
Fathalla Rihan
author_sort Muhammad Sinan
collection DOAJ
description In this study, we investigate the semianalytic solution of the fifth-order Kawahara partial differential equation (KPDE) with the approach of fractional-order derivative. We use Caputo-type derivative to investigate the said problem by using the homotopy perturbation method (HPM) for the required solution. We obtain the solution in the form of infinite series. We next triggered different parametric effects (such as x, t, and so on) on the structure of the solitary wave propagation, demonstrating that the breadth and amplitude of the solitary wave potential may alter when these parameters are changed. We have demonstrated that He’s approach is highly effective and powerful for the solution of such a higher-order nonlinear partial differential equation through our calculations and simulations. We may apply our method to an additional complicated problem, particularly on the applied side, such as astrophysics, plasma physics, and quantum mechanics, to perform complex theoretical computation. Graphical presentation of few terms approximate solutions are given at different fractional orders.
format Article
id doaj-art-ca9d89d43ce54851ba80b5d4ded8a4ae
institution Kabale University
issn 2314-4785
language English
publishDate 2021-01-01
publisher Wiley
record_format Article
series Journal of Mathematics
spelling doaj-art-ca9d89d43ce54851ba80b5d4ded8a4ae2025-02-03T06:06:26ZengWileyJournal of Mathematics2314-47852021-01-01202110.1155/2021/6045722On Semianalytical Study of Fractional-Order Kawahara Partial Differential Equation with the Homotopy Perturbation MethodMuhammad Sinan0Kamal Shah1Zareen A. Khan2Qasem Al-Mdallal3Fathalla Rihan4School of Mathematical SciencesDepartment of MathematicsCollege of ScienceDepartment of Mathematical SciencesDepartment of Mathematical SciencesIn this study, we investigate the semianalytic solution of the fifth-order Kawahara partial differential equation (KPDE) with the approach of fractional-order derivative. We use Caputo-type derivative to investigate the said problem by using the homotopy perturbation method (HPM) for the required solution. We obtain the solution in the form of infinite series. We next triggered different parametric effects (such as x, t, and so on) on the structure of the solitary wave propagation, demonstrating that the breadth and amplitude of the solitary wave potential may alter when these parameters are changed. We have demonstrated that He’s approach is highly effective and powerful for the solution of such a higher-order nonlinear partial differential equation through our calculations and simulations. We may apply our method to an additional complicated problem, particularly on the applied side, such as astrophysics, plasma physics, and quantum mechanics, to perform complex theoretical computation. Graphical presentation of few terms approximate solutions are given at different fractional orders.http://dx.doi.org/10.1155/2021/6045722
spellingShingle Muhammad Sinan
Kamal Shah
Zareen A. Khan
Qasem Al-Mdallal
Fathalla Rihan
On Semianalytical Study of Fractional-Order Kawahara Partial Differential Equation with the Homotopy Perturbation Method
Journal of Mathematics
title On Semianalytical Study of Fractional-Order Kawahara Partial Differential Equation with the Homotopy Perturbation Method
title_full On Semianalytical Study of Fractional-Order Kawahara Partial Differential Equation with the Homotopy Perturbation Method
title_fullStr On Semianalytical Study of Fractional-Order Kawahara Partial Differential Equation with the Homotopy Perturbation Method
title_full_unstemmed On Semianalytical Study of Fractional-Order Kawahara Partial Differential Equation with the Homotopy Perturbation Method
title_short On Semianalytical Study of Fractional-Order Kawahara Partial Differential Equation with the Homotopy Perturbation Method
title_sort on semianalytical study of fractional order kawahara partial differential equation with the homotopy perturbation method
url http://dx.doi.org/10.1155/2021/6045722
work_keys_str_mv AT muhammadsinan onsemianalyticalstudyoffractionalorderkawaharapartialdifferentialequationwiththehomotopyperturbationmethod
AT kamalshah onsemianalyticalstudyoffractionalorderkawaharapartialdifferentialequationwiththehomotopyperturbationmethod
AT zareenakhan onsemianalyticalstudyoffractionalorderkawaharapartialdifferentialequationwiththehomotopyperturbationmethod
AT qasemalmdallal onsemianalyticalstudyoffractionalorderkawaharapartialdifferentialequationwiththehomotopyperturbationmethod
AT fathallarihan onsemianalyticalstudyoffractionalorderkawaharapartialdifferentialequationwiththehomotopyperturbationmethod