Besov-Schatten Spaces

We introduce the Besov-Schatten spaces 𝐵𝑝(ℓ2), a matrix version af analytic Besov space, and we compute the dual of this space showing that it coincides with the matricial Bloch space introduced previously in Popa (2007). Finally we compute the space of all Schur multipliers on 𝐵1(ℓ2).

Saved in:
Bibliographic Details
Main Authors: A. N. Marcoci, L. G. Marcoci, L. E. Persson
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Journal of Function Spaces and Applications
Online Access:http://dx.doi.org/10.1155/2012/693251
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832563663702065152
author A. N. Marcoci
L. G. Marcoci
L. E. Persson
author_facet A. N. Marcoci
L. G. Marcoci
L. E. Persson
author_sort A. N. Marcoci
collection DOAJ
description We introduce the Besov-Schatten spaces 𝐵𝑝(ℓ2), a matrix version af analytic Besov space, and we compute the dual of this space showing that it coincides with the matricial Bloch space introduced previously in Popa (2007). Finally we compute the space of all Schur multipliers on 𝐵1(ℓ2).
format Article
id doaj-art-ca8cf91478814195a6d3ee14601e388e
institution Kabale University
issn 0972-6802
1758-4965
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces and Applications
spelling doaj-art-ca8cf91478814195a6d3ee14601e388e2025-02-03T01:12:59ZengWileyJournal of Function Spaces and Applications0972-68021758-49652012-01-01201210.1155/2012/693251693251Besov-Schatten SpacesA. N. Marcoci0L. G. Marcoci1L. E. Persson2Department of Mathematics and Computer Science, Technical University of Civil Engineering Bucharest, 020396 Bucharest, RomaniaDepartment of Mathematics and Computer Science, Technical University of Civil Engineering Bucharest, 020396 Bucharest, RomaniaDepartment of Mathematics, Luleå University of Technology, 97 187 Luleå, SwedenWe introduce the Besov-Schatten spaces 𝐵𝑝(ℓ2), a matrix version af analytic Besov space, and we compute the dual of this space showing that it coincides with the matricial Bloch space introduced previously in Popa (2007). Finally we compute the space of all Schur multipliers on 𝐵1(ℓ2).http://dx.doi.org/10.1155/2012/693251
spellingShingle A. N. Marcoci
L. G. Marcoci
L. E. Persson
Besov-Schatten Spaces
Journal of Function Spaces and Applications
title Besov-Schatten Spaces
title_full Besov-Schatten Spaces
title_fullStr Besov-Schatten Spaces
title_full_unstemmed Besov-Schatten Spaces
title_short Besov-Schatten Spaces
title_sort besov schatten spaces
url http://dx.doi.org/10.1155/2012/693251
work_keys_str_mv AT anmarcoci besovschattenspaces
AT lgmarcoci besovschattenspaces
AT lepersson besovschattenspaces