Study on the Spatiotemporal Distribution Characteristics and Constitutive Relationship of Foggy Airspace in Mountainous Expressways

To study the generation and dissipation process of agglomerate fog in mountainous expressways and deeply understand the hazard mechanisms of agglomerate fog sections in mountainous expressways, based on the analysis of the geographical location characteristics of mountainous expressways and the spat...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaolei Li, Yinxia Zhan, Tingsong Cheng, Qianghui Song
Format: Article
Language:English
Published: MDPI AG 2025-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/15/8615
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To study the generation and dissipation process of agglomerate fog in mountainous expressways and deeply understand the hazard mechanisms of agglomerate fog sections in mountainous expressways, based on the analysis of the geographical location characteristics of mountainous expressways and the spatial and temporal distribution characteristics of agglomerate fog, the airspace constitutive model of agglomerate fog in mountainous expressways was constructed based on Newton constitutive theory. Firstly, the properties of the Newtonian fluid and cluster fog were compared and analyzed, and the influence mechanism of environmental factors such as the altitude difference, topography, water system, valley effect, and vegetation on the generation and dissipation of agglomerate fog in mountainous expressways was analyzed. Based on Newton’s constitutive theory, the constitutive model of temperature, humidity, wind speed, and agglomerate fog points in the foggy airspace of the mountainous expressway was established. Then, the time and spatial distribution of fog in Chongqing and Guizhou from 2021 to 2023 were analyzed. Finally, the model was verified by using the meteorological data and fog warning data of Liupanshui City, Guizhou Province in 2023. The results show that the foggy airspace of mountainous expressways can be defined as “the space occupied by the agglomerate fog that occurs above the mountain expressway”; The temporal and spatial distribution of foggy airspace on expressways in mountainous areas is closely related to the topography, water system, vegetation distribution, and local microclimate formed by thermal radiation. The horizontal and vertical movements of the atmosphere have little influence on the foggy airspace on expressways in mountainous areas. The specific manifestation of time distribution is that the occurrence of agglomerate fog is concentrated from November to April of the following year, and the daily occurrence time is mainly concentrated between 4:00–8:00 and 18:00–22:00. The calculation results of the foggy airspace constitutive model of the expressway in the mountainous area show that when there is low surface radiation or no surface radiation, the fogging value range is [90, 100], and the fogging value range is [50, 70] when there is high surface radiation (>200), and there is generally no fog in other intervals. The research results can provide a theoretical basis for traffic safety management and control of mountainous expressway fog sections.
ISSN:2076-3417