A Model for Diagnosing Mild Nutrient Stress in Facility-Grown Tomatoes Throughout the Entire Growth Cycle
The effective diagnosis of mild nutrient stress across the complete growth cycle of facility-grown tomatoes is challenging. This study proposes a deep learning framework based on CNN + LSTM, using canopy near-infrared spectroscopy from different growth stages of tomatoes as input, to diagnose mild s...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Agriculture |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-0472/15/3/307 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The effective diagnosis of mild nutrient stress across the complete growth cycle of facility-grown tomatoes is challenging. This study proposes a deep learning framework based on CNN + LSTM, using canopy near-infrared spectroscopy from different growth stages of tomatoes as input, to diagnose mild stress of nitrogen (N), potassium (K), and calcium (Ca) throughout the entire growth cycle of facility-grown tomatoes. The study compares the diagnostic performance of Random Forest (RF), Support Vector Machine (SVM), Partial Least Squares (PLS), Convolutional Neural Networks (CNNs), and CNN + Long Short-Term Memory (LSTM) models for detecting mild nutrient stress in facility-grown tomatoes. Firstly, the preprocessing method of spectral characteristic bands combined with Savitzky-Golay (SG) + Standard Normal Variate (SNV) was determined. Subsequently, all sample data were divided into six groups: N-deficient, K-deficient, Ca-deficient, N-excess, K-excess, and Ca-excess. The aforementioned models were then used for classification prediction. The results show that RF and CNN + LSTM models demonstrated good predictive performance. Specifically, RF achieved accuracy rates of 70.14%, 90.81%, 88.59%, and 85.37% in the classification tasks of Ca-deficient, N-excess, K-excess, and Ca-excess, respectively. The CNN + LSTM model achieved accuracy rates of 93.33%, 63.33%, 99.2%, 83.33%, and 98.52% in the classification tasks of K-deficient, Ca-deficient, N-excess, K-excess, and Ca-excess, respectively. Finally, in the Leave-One-Group-Out Validation (LOGOV) for validating the model’s generalisation performance, RF performed better in the N-deficient, K-deficient, and Ca-deficient tasks, achieving diagnostic accuracy rates of 80.19%, 81.43%, and 77.02%, respectively. The CNN + LSTM model showed a diagnostic accuracy rate of 66.72% in the N-excess classification task. The study concludes that, given complete training data, the CNN + LSTM model can effectively diagnose mild nutrient stress (N, K, and Ca) in facility-grown tomatoes in most scenarios. |
|---|---|
| ISSN: | 2077-0472 |