In vitro degradation, haemolysis and cytotoxicity study of Mg‐0.4Ce/ZnO2 nanocomposites
Abstract Magnesium is an ideal candidate for biodegradable implants, but the major concern is its uncontrollable degradation for application as a biomaterial. The in vitro corrosion and cytotoxicity of Mg‐0.4Ce/ZnO2 (magnesium nanocomposites) were studied to determine its suitability as a biodegrada...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2021-04-01
|
| Series: | IET Nanobiotechnology |
| Online Access: | https://doi.org/10.1049/nbt2.12032 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Magnesium is an ideal candidate for biodegradable implants, but the major concern is its uncontrollable degradation for application as a biomaterial. The in vitro corrosion and cytotoxicity of Mg‐0.4Ce/ZnO2 (magnesium nanocomposites) were studied to determine its suitability as a biodegradable material. The polycrystalline nature of Mg‐0.4Ce/ZnO2 was assessed using an optical microscope. The hydrophobic nature of Mg‐0.4Ce/ZnO2 was determined by contact angle measurements. The corrosion resistance of magnesium nanocomposites was tested in phosphate buffer solution (PBS) and it was improved by the gradual deposition of a protective layer on its surface after 48 h. The cytotoxicity of Mg‐0.4Ce/ZnO2 was evaluated by 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and calcium deposition by Alizarin red staining using sarcoma osteogenic (Saos2) cells. The haemocompatibility test of Mg‐0.4Ce/ZnO2 showed 30% haemolysis, which is higher than the safe value for biomaterials, and cell viability was reduced after 24 h in comparison with control groups. The calcium deposition by sarcoma osteogenic cells showed a brick red colour deposition in both the control group and Mg‐0.4Ce/ZnO2 after 24 h. The preliminary degradation results of Mg‐0.4Ce/ZnO2 showed good corrosion resistance; however further improvement is needed in haemolysis and cytotoxicity studies for its use as a biodegradable material for orthopaedic applications. |
|---|---|
| ISSN: | 1751-8741 1751-875X |